命名实体识别(Named Entity Recognition,NER)是自然语言处理领域的一项关键任务,旨在从文本中识别和分类特定的命名实体,如人名、地名、组织机构名等。NER的目标是标记文本中的实体,并将其归类到预定义的实体类型中。 NER通常使用机器学习和深度学习技术来完成任务。以下是一种常见的NER流程: 数据收集和标注:收集包含命名实体的文本数据,并为每个实体标注相应的标签(实体类型)。 特征提取:从文本数据中提取有用的特征,如词性、词形、上下文等。这些特征将作为输入提供给模型。 模型训练:使用标注好的数据和提取的特征来训练NER模型。常用的模型包括条件随机场(CRF)、循环神经网络(RNN)、注意力机制等。 模型评估和调优:使用评估数据集来评估训练得到的模型性能,并进行调优以提高准确性和召回率。 实体识别:使用训练好的NER模型对新的文本进行实体识别。模型将识别并标记文本中的命名实体,使其易于提取和理解。 NER在许多应用中起着重要作用,例如信息抽取、问答系统、文本摘要、机器翻译等。以帮助自动化处理大量文本数据,并提供有关实体的结构化信息,为后续的分析和应用提供基础。
2024-02-24 12:25:37 121.6MB
1
iamQA 中文wiki百科问答系统,本项目使用了torchserver部署模型 知识库:wiki百科中文数据 模型:使用了的NER(CCKS2016数据)和阅读理解模型(CMRC2018),还有Word2Vec词向量搜索。 详细内容可以参考文章: 项目框架 模块介绍 ChineseWiki-master 功能:清洗wiki中文数据 相关项目: NER 功能:从问题中识别实体 例子:qurry:周董是谁? 》》 entiy:周董 模型:ALBERT 数据集:CCKS2016KBQA 相关项目: Word2vec 功能:如果实体不在知识库,则用W2V搜索近似实体 例子:entity:周董 >> ['周杰伦','JAY','林俊杰'] 相关项目: Entity linking 功能:根据NER或W2V得到的mention entity搜索知识库 Reader 功能:阅读理解文段,精确定位答
2023-12-22 16:42:56 636KB wiki Python
1
使用BERT的越南语NER(bert-vn-ner) 由Trong-Dat Ngo编写的代码。 引言 BERT模型的Pytorch实现为越南语执行命名实体识别(NER)。 此外,单词中的特征也用于表示单词。 该系统使用预训练模型 安装 要求: Python 3.6+ 火炬1.4+ 安装依赖项: pip3 install -r requirements.txt 数据集格式 bert-vn-ner的输入数据格式遵循CoNLL-2003格式,其中四列由制表符分隔,包括word , pos , chunk和named实体。 每个单词都放在单独的行上,每个句子后面都有一个空行。 请注意,分词不用于匹配BERT的预训练(以bert-base-multilingual-cased表示) 。 有关详细信息,请参见“数据”目录中的样本数据。 下表描述了数据集中的越南语例句示例。 单词 销售点
2023-03-23 21:36:36 710KB tagging named-entity-recognition ner bert
1
BERT-NER-Pytorch-master
2023-03-09 19:19:58 229KB nlp
1
自然语言处理的子任务命名实体识别中文的数据集,很全
2023-02-25 17:23:59 148KB Resume NER中文数据集
1
Conll-2003 数据集:第一列是单词,第二列是词性,第三列是语法,第四列是实体标签。在NER任务中,只关心一和四列。
2023-01-31 16:37:08 729KB 自然语言处理 人工智能 nlp
1
ner_crf ner_crf是Jupyter笔记本,它使用 / 实现,使用条件随机字段(CRF)描述了命名实体识别(NER)。 依存关系 ner_crf用编写,因此在使用python3之前应下载最新版本的python3 。 可以从找到python的下载(建议使用3.5.1版)。 您还需要能够运行Jupyter Notebook(请参阅 )。 还需要以下python库来运行ner_crf笔记本:
2022-12-12 20:26:51 961KB python nlp machine-learning crf
1
spacy-ner-注释器 安装 pip3 安装 spacy 使用步骤 打开index.html文件并打开其中的数据。 发布注释下载数据并使用convert_spacy_train_data.py转换为 spacy 格式 如果您愿意,将数据拆分为训练和测试并将其添加到train.py 最后在设置超参数后运行 train.py。 迭代损失记录在output_log.txt 。 准确率、召回率和 f1 分数记录在train_output.txt和test_output.txt 通过运行losses_plotter.py检查进度。 如果您希望通过模型进行训练,请下载模型并在train.py添加其名称 详细信息和积分 访问这个网址: https://manivannanmurugavel.github.io/annotating-tool/spacy-ner-annotator/
1
Stanza:斯坦福NLP自然语言处理Python工具包,NER有很大改进(支持中文) Stanza:适用于多种人类语言的 Python NLP 库 斯坦福 NLP 集团的官方 Python NLP 库。 它支持在 60 多种语言上运行各种准确的自然语言处理工具,并支持从 Python 访问 Java Stanford CoreNLP 软件。 有关详细信息,请访问我们的官方网站。 参考资料 如果您在研究中使用此库,请引用我们的 Stanza 系统描述论文:@inproceedings{qi2020stanza, title={Stanza: A {Python} Natural Language Processing Toolkit for Many Human Languages},作者={Qi, Peng and Zhang, Yuhao and Zhang, Yuhui and Bolton, Jason and Manning, Christopher D.}, booktitle = "Proceedings of the Association for Computa
2022-12-04 23:10:31 720KB 自然语言处理
1
该代码完整实现了基于bilstm+crf的tensorflow实现,可训练、预测。 ├── Batch.py # 实现batch功能 ├── bilstm_crf.py # 模型定义 ├── data # 数据文件夹 │   ├── Bosondata.pkl # 训练数据的输入(加工后) │   ├── generate_dataset.py # 数据加工脚本,将原数据处理成模型需要的格式 │   └── wordtagsplit.txt # 原数据 ├── train.py # 训练相关的代码 └── utils.py # 功能函数
2022-11-24 19:09:45 2.38MB bilstm crf ner tensorflow
1