类别变量(categorical variable):只有有限个值得变量,如性别就是一个类别变量,类似于这种。 如果不对这些变量做预处理,训练出来的模型可能是错误的。 主要有三种方法来处理这个变量。 如何从数据中找到类别变量? 我们可以对每一列检查它的数据类型,某列的数据类型为”object”,表明该列有文本(也可能是其他的,但对我们的目标来说不重要),某列是数据是文本,则该列表示类别变量。 代码如下: # 获得类别变量的列名,存放在列表中 s = (X_train.dtypes == 'object') object_cols = list(s[s].index) 1.直接删除类别变量。
2023-02-20 14:28:36 63KB ab al ar
1
Approximation Algorithms for K-Modes Clustering,何增友,,In this paper, we study clustering with respect to the k-modes objective function, a natural formulation of clustering for categorical data. One of the main contributions of this p
2022-12-28 15:33:15 223KB Clustering Categorical Data K-Means
1
Categorical Depth Distribution Network for Monocular 3D Object Detection翻译
2022-11-16 18:44:53 670KB 3d 目标检测 人工智能 计算机视觉
1
from keras.utils.np_utils import to_categorical 注意:当使用categorical_crossentropy损失函数时,你的标签应为多类模式,例如如果你有10个类别,每一个样本的标签应该是一个10维的向量,该向量在对应有值的索引位置为1其余为0。 可以使用这个方法进行转换: from keras.utils.np_utils import to_categorical categorical_labels = to_categorical(int_labels, num_classes=None) 以mnist数据集为例: from ke
2022-03-24 23:09:30 69KB al AS c
1
在分类及预测任务中对高维类别(category)变量的预处理方法
2021-12-09 19:29:49 290KB Categorical
1
关于categorical dqn的例子,适合初学者对深度强化学习categorical dqn的认识和了解
2021-11-11 13:51:37 109KB categorical dqn
1
问题描述: 在利用神经网络进行分类和识别的时候,使用了keras这个封装层次比较高的框架,backend使用的是tensorflow-cpu。 在交叉验证的时候,出现 val_categorical_accuracy: 0.0000e+00的问题。 问题分析: 首先,弄清楚,训练集、验证集、测试集的区别,验证集是从训练集中提前拿出一部分的数据集。在keras中,一般都是使用这种方式来指定验证集占训练集和的总大小。 validation_split=0.2 比如,经典的数据集MNIST,共有60000个训练集,就会 Train on 48000 samples, validate on
2021-09-29 16:54:35 48KB al AS c
1
主要介绍了解决keras,val_categorical_accuracy:,0.0000e+00问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
2021-09-24 11:28:38 46KB keras val_categorical_accuracy 0.0000e+00
1
主要介绍了Keras中的多分类损失函数用法categorical_crossentropy,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
2021-03-30 17:39:37 72KB Keras 多分类 损失函数
1
Categorical Data Analysis Using SAS(3rd) 英文无水印原版pdf 第3版 pdf所有页面使用FoxitReader、PDF-XChangeViewer、SumatraPDF和Firefox测试都可以打开 本资源转载自网络,如有侵权,请联系上传者或csdn删除 查看此书详细信息请在美国亚马逊官网搜索此书
2020-02-02 03:15:44 4.55MB Categorical Data Analysis Using
1