在电力行业中,数字孪生(Digital Twin)技术已经成为变电站管理和运维的重要工具。"变电站通用设备模型-800kV断路器-gltf格式-three.js模型-电力数字孪生"是一个针对800kV高压断路器的三维数字化模型,它结合了先进的图形技术和实际电力设备的物理特性和工作原理,为变电站的运行和维护提供直观、精确的可视化解决方案。 800kV断路器是电力系统中关键的设备之一,主要用于切断或闭合高压电路中的大电流,确保电网的安全稳定运行。这种高电压等级的断路器设计和运行需要高度的专业知识和技术,因为它们需要处理极高的电能,并且在故障情况下能够迅速动作,防止电力事故的发生。 gltf(GL Transmission Format)是一种高效、轻量级的3D模型格式,被广泛用于Web上的实时渲染和交互。与传统的3D模型格式如FBX或OBJ相比,gltf具有更小的文件大小和更快的加载速度,适合于网络传输和在线应用。在这个案例中,gltf格式的模型使得800kV断路器能够在Web浏览器上流畅地显示,无需用户下载大型文件,提升了用户体验。 three.js是一个基于WebGL的开源JavaScript库,用于在浏览器中创建三维图形。它提供了丰富的功能,包括场景管理、光照效果、动画处理等,使得开发者能够轻松地构建复杂的3D场景。在电力数字孪生领域,three.js能够帮助工程师们将变电站的设备模型以真实感的三维形式呈现,实现远程监控、故障模拟、预防性维护等功能。 通过这个800kV断路器的three.js模型,操作人员可以在电脑前就能观察到设备的详细结构,理解其工作状态,甚至进行故障预演。例如,可以通过动画模拟断路器的开断过程,分析潜在的问题,提前制定解决方案。此外,模型还可以集成传感器数据,实时反映设备的运行参数,帮助实时监控和诊断。 文件列表中的"1-7QF-T2-GIM01-800kV断路器模型01.bin"和"1-7QF-T2-GIM01-800kV断路器模型01.gltf"分别是断路器模型的二进制数据文件和gltf描述文件。bin文件通常包含模型的几何数据、纹理信息等,而gltf文件则包含了模型的结构信息,如材质、光照、动画等,两者结合使得模型在Web环境中能够完整地展现。 总结来说,"变电站通用设备模型-800kV断路器-gltf格式-three.js模型-电力数字孪生"项目利用了先进的3D建模技术,将800kV断路器的复杂结构和功能以直观、互动的方式呈现,为电力行业的数字化转型提供了有力支持。它不仅可以提升运维效率,减少现场作业的风险,还能通过模拟和预测,优化设备性能,确保电力系统的安全和可靠。
2025-11-10 17:34:09 125KB three.js gltf 3D可视化
1
在深入探讨激光雷达与3D成像技术之3D成像的专题中,首先应该了解3D成像技术是指通过一系列的技术手段和方法,捕捉和重建物体的三维信息,从而在二维的显示设备上复现三维立体场景的技术。本专题将分别从不同的技术实现方式入手,详细解析这些技术的原理、优势以及存在的劣势,以帮助读者对3D成像技术有一个全面的认识。 在3D成像技术中,最为人熟知且被广泛应用于多个领域的就是双目成像技术。双目技术是基于人类双眼立体视觉的原理,使用两个摄像头模拟人眼观察物体,利用视差原理计算出物体的深度信息。这种方法对于硬件设备的性能要求不高,市面上大量的通用摄像头都可以使用。不过,双目技术需要一个固定的物理基线来保证测量的准确性,这就要求双目摄像头之间的距离要符合一定的标准。此外,这种方法对环境光线的变化敏感,尤其在光线暗淡或者表面缺乏对比度时,测量的准确度会大大降低。由于双目技术需要精确的机械对准和校准,算法复杂,计算负荷大,这些都限制了它的应用范围。 结构光技术是另一种主要的3D成像方法,与双目技术相比,结构光技术在一定程度上克服了双目技术对于环境光线的依赖。结构光系统通常由一台相机和一个投影仪构成,利用投射的条纹光来计算物体表面的深度信息。结构光技术的一大优点在于它对相机帧率没有限制,可以实现无运动模糊的效果,并且对于多径干扰具有较强的抗干扰能力。然而,结构光技术也有其不足之处,比如需要高精度的相机和投影仪,对环境中的光学干涉或结构和纹理变化敏感,且如果投影仪和相机之间对准不准确,则可能需要进行重新校准。 激光三角测量技术也是3D成像领域中一个较为常见的方法,它的基本构成是2D相机、镜头和激光器。激光器发射的光斑投射到被测物上,然后相机通过捕捉反射光点来测量距离信息。激光三角测量技术可以实现高精度的测量,特别适合近距离测量场景。但是,它也有局限性,例如对于环境光变化敏感,且适用于扫描应用程序。 飞行时间(Time Of Flight, TOF)技术是一种能够直接测量每个像素深度和幅度的技术,它通过测量光源发射光脉冲与返回到图像传感器上的时间差来计算距离。TOF技术在室内环境中的表现较好,因为它可以在一定的环境光条件下工作。但是,TOF技术也存在一些固有的劣势,例如它需要主动光源同步,存在多径干扰,以及潜在的距离混叠问题。 脉冲型技术原理是通过两个不同持续时间的脉冲来计算反射信号的时间积分,根据积分结果反推脉冲激光的反射时间,从而计算出距离信息。这种方法计算原理简单,但需要激光作为光源,成本较高,并且对背景光抑制效果不佳。 TCSPC(Time-Correlated Single Photon Counting)技术则是另一种先进的3D成像技术,其系统主要包括单光子探测器(SPAD)和时间数字转换器(TDC)。TCSPC技术可以实现很远距离的测量,但相应地也需要较高的成本。 连续波技术是通过发射调制频率的连续波信号,然后计算反射信号和发射信号之间的相位差来得到距离信息的技术。这种方法可以应用于工业、农业、机器人导航等多个领域。 不同的3D成像技术各有其优势和局限性,适用于不同的场合和需求。在实际应用中,需要根据具体的需求和环境条件来选择最合适的3D成像技术。
2025-11-10 16:17:50 1.1MB
1
项目介绍: 本项目利用 Three.js 和 Vue 构建了一个前端 3D 场景,通过 Three.js 实现逼真的 3D 渲染,用于展示智慧园区的监测设备,如:电力监测、水力监测等。 项目运行: cnpm install  安装所有依赖 npm run serve 启动项目 在当今的信息化时代,随着互联网技术的迅速发展,前端技术也在不断地进行创新和升级。Vue和Three.js作为当下前端开发领域里非常受欢迎的两个库,它们在构建复杂的3D场景和用户体验上发挥着巨大的作用。Vue是一个构建用户界面的渐进式框架,它通过响应式数据绑定和组合的视图组件,让开发者可以更快速地构建单页面应用。Three.js则是一个基于WebGL的库,它提供了一套简洁的API来创建和展示3D图形,使得开发者无需直接面对复杂的WebGL编程就能实现复杂的3D场景。 本文所介绍的项目“Vue +Three.js 智慧园区前端3D场景”,就是将Vue框架和Three.js库相结合,搭建出了一个能够逼真展示智慧园区监测设备运行情况的3D前端界面。智慧园区作为一种集成了众多先进技术的概念,涵盖了物联网、云计算、大数据分析等多种技术,其目的在于提升园区的管理效率和居住、工作在园区内人们的舒适度和便利性。该项目正是运用了这些技术的一个典型应用案例。 具体到实现上,Three.js为Vue应用提供了强大的3D图形渲染能力。开发者可以利用Three.js提供的功能,如场景(Scene)、相机(Camera)、渲染器(Renderer)等来创建一个3D环境,再通过加载模型、设置光照和材质等手法,构建出一个立体的智慧园区模型。在这个模型中,可以展示园区内的各种监测设备,例如电力监测、水力监测等,它们可以被设计成具有动态交互效果的3D模型,使得整个场景更加生动、直观。 在项目运行方面,开发者需要遵循一定的步骤来部署和启动该项目。通过cnpm install命令安装项目所需的所有依赖包,这些依赖包括但不限于Vue框架本身、Three.js库以及可能存在的其他如路由、状态管理、UI组件库等。安装完成后,通过npm run serve命令启动项目,这样就可以在本地服务器上预览该项目的实际运行效果。这种运行方式非常适合前端开发中的热更新特性,能够实时反映代码修改后的影响。 项目所用到的技术标签包括vue.js、javascript、前端、3d以及智慧园区。vue.js和javascript是构建整个项目的基础技术栈;前端指的是项目的应用场景,即构建的是一个面向用户界面的应用;3d是项目的核心特征,体现了项目在3D场景构建上的专业能力;智慧园区则指明了项目的行业应用场景,即面向智慧园区的3D展示。 这个项目在展示技术能力的同时,也体现了前端技术在智能城市、智慧园区等未来城市建设中的潜在应用。随着技术的不断进步和智能化解决方案的日益完善,类似的技术框架将会有更加广阔的应用前景,它能够帮助我们更好地管理和维护城市的各种基础设施,提升城市居民的生活品质。 Vue +Three.js 智慧园区前端3D场景项目不仅展示了如何利用现代前端技术构建一个3D场景,更重要的是,它为智慧园区管理提供了一个创新的展示平台,通过这种3D展示形式,我们可以更加直观和有效地理解园区内部的运作情况,为未来的智能化管理提供了一种可行的技术路径。
2025-11-04 17:00:34 35.33MB vue.js javascript 智慧园区
1
《UE4-逃生:利用虚幻引擎4构建3D益智游戏详解》 虚幻引擎4(Unreal Engine 4,简称UE4)是Epic Games公司开发的一款强大的游戏开发平台,广泛应用于制作高质量的3D游戏。"UE4-逃生"是一款基于此引擎打造的3D益智游戏,它以其独特的游戏机制和引人入胜的环境设计,挑战玩家的逻辑思维和解谜能力。玩家在游戏中需要通过解决一系列复杂谜题来寻找逃生之路,从而体验到一场沉浸式的游戏冒险。 游戏设计的关键在于谜题的设定。在"UE4-逃生"中,开发者可能运用了各种元素,如机关、密码锁、隐藏路径等,来设计出富有层次感的关卡。玩家需要观察环境,找出线索,甚至利用物理原理进行互动,以逐步解开谜题。这种设计不仅考验了玩家的智商,也增强了游戏的可玩性和趣味性。 虚幻引擎4的强大在于其图形渲染能力和实时编辑功能。通过UE4,开发者可以创建逼真的光照、阴影效果以及细腻的材质表现,营造出丰富而真实的3D环境。同时,UE4提供的蓝图系统使得非程序员也能通过可视化界面设计游戏逻辑,大大降低了游戏开发的门槛。 "UE4-逃生"还特别强调了音效在游戏氛围营造中的作用。开门和关门的声音,正如描述中提到的,可能是通过音效轨道精心制作的,它们不仅增强了游戏的沉浸感,还能为玩家提供关键的提示信息,帮助他们理解游戏状态,甚至在关键时刻制造紧张感。 在标签中,我们可以看到"game-dev"和"UnrealEngineC++",这表明"UE4-逃生"可能采用了C++进行底层开发,这种编程语言可以提供更高的性能和更灵活的控制。同时,"gamedev"标签则涵盖了整个游戏开发流程,包括策划、设计、编程、美术、测试等环节。 在"ue4-escape-master"这个压缩包文件中,可能包含了项目的所有源代码、资源文件、蓝图设置等内容,对于学习UE4游戏开发的人来说,这是一个宝贵的参考资料。通过研究这些内容,开发者可以了解到如何将UE4的功能与3D益智游戏的设计理念相结合,实现一个完整且引人入胜的游戏体验。 "UE4-逃生"是虚幻引擎4在3D益智游戏领域的一次精彩应用,它融合了丰富的视觉表现、精心设计的谜题和恰到好处的音效,展现了UE4在游戏开发领域的强大潜力。对于希望深入学习游戏开发或提升自己UE4技能的爱好者来说,这款作品无疑是一个值得研究的范例。
2025-10-30 11:18:00 51.17MB game gamedev puzzle game-development
1
可靠性是三维NAND闪存(3D NAND Flash)记忆体技术发展中最重要的挑战之一。随着市场对数据存储密度增长的需求,而对存储介质的面积增长需求却保持不变,这就要求内存设备的存储容量在不增加面积占用的前提下持续增长。为此,提高内存密度和缩小存储单元尺寸变得势在必行。 在传统的二维(2D)NAND闪存技术向三维(3D)架构转变的过程中,以电荷陷阱(Charge Trap, CT)技术为基础的NAND存储单元被认为是最具发展前景的技术之一,因为它比浮栅(Floating Gate, FG)技术有更好的可扩展性。尽管CT存储单元在理论上显示出了高度的潜力,但是这种技术也存在若干可靠性问题。并且,从2D到3D的过渡改变了已知的可靠性问题的影响,并产生了新的问题。 在三维NAND闪存的研究领域中,主要的可靠性机制被广泛研究。其中包括从基本的可靠性问题开始,涉及影响NAND闪存的物理和架构方面的因素。为了保证信息存储的正确性和稳定性,NAND技术必须确保即使在经过大量写操作并且长时间存储后,存储的信息依然能够保持不变。 本章将围绕影响三维NAND闪存的可靠性机制进行探讨,提供了3DFG和3DCT设备在可靠性和预期性能方面的比较。通过分析基本的可靠性问题,包括物理和架构方面的问题,将具体讨论影响2D记忆体和CTNAND存储单元可靠性的物理机制。此外,文章将回顾实验中发现的主要问题。 为了应对这些挑战,研究人员提出了新的三维垂直FG型NAND存储单元阵列。这类新设计的阵列具有前景看好的性能表现,并有助于克服三维NAND闪存在可靠性方面的问题。 上述内容中,还提到了文章作者A. Grossi, C. Zambelli和P. Olivo,他们在意大利费拉拉大学的工程系工作,并分别通过电子邮件联系。此外,本书名为《3D闪存》,由Springer Science+Business Media出版,并且在本章中,将深入分析影响三维NAND闪存记忆体的主要可靠性问题,以及基于这些分析,如何通过比较不同技术(如3DFG和3DCT)来预期未来的性能表现。这些内容无疑为理解三维NAND闪存技术的可靠性问题提供了丰富的理论基础和实践经验。
2025-10-29 18:03:47 1.73MB
1
本数据集名为“3D打印缺陷检测数据集”,采用VOC+YOLO格式,共包含5864张图像,分为三个类别,用于3D打印缺陷的视觉检测。数据集由1/3的原始图像和2/3的增强图像组成,所有图像均配有详细的标注信息。标注工具有labelImg,其中标注类别包括“spaghetti”、“stringing”和“zits”,分别对应3D打印中的不同缺陷类型。 在数据集格式方面,遵循Pascal VOC格式和YOLO格式标准,包含了5864张jpg格式的图片,每个图片均配有相应的VOC格式xml文件和YOLO格式txt文件。xml文件中记录了图片的元数据和标注信息,而txt文件则以YOLO格式提供了标注框的详细坐标和类别信息。标注信息准确地反映了图像中存在的缺陷区域。 具体来说,每个类别在数据集中标注的框数为:“spaghetti”框数为9339,“stringing”框数为2353,“zits”框数为30427,总标注框数达到了42119。这为训练高精度的3D打印缺陷检测模型提供了丰富的数据支持。 值得一提的是,类别名称在YOLO格式中的顺序并不与VOC格式中的名称顺序相对应,而是以labels文件夹中的classes.txt文件为准。这样的设计可能是为了满足不同标注系统之间的兼容性和切换需要。使用该数据集的用户需要根据此文件确定类别与编号之间的对应关系。 在使用数据集时,用户需要理解数据集并不提供任何关于模型训练效果或权重文件精度的保证。这表明用户在使用数据集进行模型训练时,需要自行验证模型的性能,并对结果负责。 该数据集为3D打印缺陷检测提供了大量经过精心标注的图像,格式规范且详尽,支持了VOC和YOLO两种主流标注格式,为研究者和开发者提供了便利,特别是在图像识别和机器学习领域的应用前景广阔。
2025-10-27 14:42:10 2.12MB 数据集
1
在当今科学技术迅猛发展的背景下,薄膜材料在各种高科技领域中的应用变得越来越广泛。在这些应用中,薄膜与其基材之间的界面粘附强度对材料的性能和使用寿命有着决定性的影响。本文所探讨的划痕试验和三维有限元模拟(3D FEM)就是针对评估薄膜/基材系统界面粘附强度的有效方法。 让我们来理解什么是划痕试验(Scratch Test)。划痕试验是一种半定量的测试方法,广泛应用于评估硬涂层薄膜和基材系统之间的界面粘附。在该测试中,一个钻石压头被拖拽过待测样品的表面,在这个过程中,人们会观察到各种不同的失效模式,比如薄膜剥落、贯穿性开裂和塑性变形等。通常情况下,当定义明确的失效发生时所对应的载荷被称为临界载荷(critical load),这个临界载荷经常被用来作为评估薄膜与基材粘附力强弱的参数。 接着,我们要讨论的另一个关键概念是有限元方法(Finite Element Method,FEM)。这是一种通过计算机模拟来预测材料在外力作用下的响应以及其内部应力分布的方法。在本文中,通过有限元方法的数值模拟,研究人员得到了Nd掺杂的钛酸铋(BNT)薄膜与硅基底系统在划痕试验过程中的应力场分布。并且,通过3D FEM展现了具有完美界面粘附的表面。 在介绍部分中,作者强调了薄膜系统的失效对薄膜材料的使用寿命有重要影响。一旦薄膜失效,它通常会从基底上剥落。传统划痕测试的原理是通过一个钻石尖的压头在被测试样表面进行刮擦,观察在刮擦过程中出现的不同类型的失效。这些失效类型包括薄膜的剥落、横向裂纹和塑性形变等。临界载荷是指当定义明确的失效发生时的载荷值。有研究指出,薄膜的粘附失败与摩擦力的突然改变有直接关联。此外,在划痕试验中,薄膜/基材系统的行为和失效模式主要受应力分布的控制。 在实际应用中,划痕测试的优点在于可以直观地评估薄膜的界面粘附性。在实验过程中,随着正常载荷的不同,通过测量切向力的变化来得到薄膜的临界载荷。切向力曲线显示出在特定载荷下,薄膜与基材界面的粘附情况。例如,在本文中,研究人员通过划痕试验得到了BNT薄膜/硅基底系统的切向力曲线,并从中获得了一定薄膜厚度(如300nm)下的临界载荷,为2.21mN。 然而,划痕试验的分析过程和结果往往因为测试条件和材料系统的复杂性而存在困难,这就是为什么需要借助数值模拟方法来辅助理解薄膜在实际应用中的物理行为。有限元模拟方法能够提供实验中难以获得的内部应力分布信息。通过模拟分析,研究者可以在三维空间内更清晰地理解不同材料结构在受到外部力作用时的应力响应,以及这些应力如何影响薄膜的界面粘附性和整体性能。 论文中提到的关键词包括“划痕试验”、“临界载荷”、“有限元”和“薄膜”,这些关键词涵盖了文章的核心研究内容。通过深入理解这些关键概念和技术,我们可以更好地掌握如何通过实验和计算机模拟的方法来评估和优化薄膜材料的性能。
2025-10-24 12:59:06 643KB 首发论文
1
这个是当时3d相机厂家自己提供的sdk,现在好像官网下载不到了。所以这里提供一下。
2025-10-22 20:06:54 7.08MB 3d相机
1
利用ABAQUS进行Bekovich压头3D纳米压痕的有限元模拟过程及其结果分析。首先,在ABAQUS中创建三维模型空间并引入Bekovich压头,接着定义材料属性(如弹性模量、泊松比)以及边界条件确保模型稳定,随后施加载荷模拟压痕过程,最终获得压痕深度、应力分布等关键数据。作者强调了有限元模拟作为研究工具的重要性,能够揭示实际实验难以观测的现象。 适合人群:从事材料科学、力学仿真领域的研究人员和技术人员。 使用场景及目标:适用于需要深入了解材料微观力学性能的研究项目,特别是关注纳米尺度下材料响应特性的团队。通过本案例的学习,可以掌握ABAQUS软件的基本操作流程,为开展相关科研工作提供理论支持和技术指导。 其他说明:文中提及的部分概念和技术细节对于初学者来说可能存在一定难度,建议结合具体文献资料进一步学习。同时,鼓励读者尝试复现文中提到的建模步骤,以便更好地理解和掌握所涉及的知识点。
2025-10-20 16:28:05 1.4MB
1
GerbToSCAD 来自 G+ 3D 社区的 Jerrill Johnson 提出了使用简单流程使用导电涂料创建 PCB 板的想法。 观看视频以了解此过程是如何执行的。 ! 该项目是将 RS-274X 扩展 Gerber Solder Stencil 转换为可以使用 Jerrill 提供的Craft.io进行 3D 打印的 SCAD 文件。 学分转到作为一个好的起点。 用法:GerbToSCAD {输入文件} {输出文件} 输入文件应该是 .gbl 文件格式。 输出文件将是 .scad 文件格式。 需要 Ruby 1.9.2 或更高版本
2025-10-13 18:49:44 1.6MB OpenSCAD
1