机器学习数据中类别变量(categorical variable)的处理方法

上传者: 38689922 | 上传时间: 2023-02-20 14:28:36 | 文件大小: 63KB | 文件类型: PDF
ab al ar
类别变量(categorical variable):只有有限个值得变量,如性别就是一个类别变量,类似于这种。 如果不对这些变量做预处理,训练出来的模型可能是错误的。 主要有三种方法来处理这个变量。 如何从数据中找到类别变量? 我们可以对每一列检查它的数据类型,某列的数据类型为”object”,表明该列有文本(也可能是其他的,但对我们的目标来说不重要),某列是数据是文本,则该列表示类别变量。 代码如下: # 获得类别变量的列名,存放在列表中 s = (X_train.dtypes == 'object') object_cols = list(s[s].index) 1.直接删除类别变量。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明