内容概要:本文介绍了基于YOLOV8和深度学习的花卉检测识别系统的详细情况。该系统已经完成了模型训练并配置好了运行环境,可以直接用于花卉检测识别任务。系统支持图片、视频以及摄像头三种输入方式,能够实时显示检测结果的位置、总数和置信度,并提供检测结果保存功能。文中还提供了详细的环境搭建步骤和技术细节,如模型加载时的设备自动切换机制、检测函数的核心逻辑、UI界面的设计思路等。 适合人群:对深度学习和计算机视觉感兴趣的开发者,尤其是希望快速应用预训练模型进行花卉检测的研究人员或爱好者。 使用场景及目标:适用于需要高效、准确地进行花卉种类识别的应用场景,如植物园管理、生态研究、自然教育等领域。目标是帮助用户快速部署并使用经过优化的花卉检测系统。 其他说明:项目采用PyCharm + Anaconda作为开发工具,主要依赖库为Python 3.9、OpenCV、PyQt5 和 Torch 1.9。提供的数据集中包含15种常见花卉类别,模型在多种环境下表现出良好的泛化能力。
2025-12-28 11:03:30 1.12MB
1
IEEE TAC期刊论文:基于延迟系统方法的网络控制系统事件触发控制器设计优化研究,基于IEEE TAC期刊的"一种针对网络控制系统的事件触发设计方法及其延迟系统模型研究",8控制TOP1期刊IEEE TAC程序复现-A Delay System Method for Designing Event-Triggered Controllers of Networked Control Systems 【主要内容】本说明涉及网络控制系统的事件触发式网络控制系统的事件触发设计。 本文提出了一种新颖的事件触发方案,与现有方案相比具有一些优势。 首先,通过研究网络传输延迟的影响,构建了一个用于分析的延迟系统模型。 然后,在此模型的基础上,推导出带规范约束的稳定性标准以及共同设计反馈增益和触发参数的标准。 这些标准是用线性矩阵不等式表示的。 仿真结果表明,所提出的事件触发方案优于文献中现有的一些事件触发方案。 ,控制; 事件触发设计; 延迟系统模型; 稳定性标准; 反馈增益; 触发参数; 程序复现; TAC期刊; 延迟系统方法; 网络控制系统。,IEEE期刊TOP1:事件触发控制器的设计优化与延
2025-12-02 21:41:06 1.21MB css3
1
打开下面链接,直接免费下载资源: https://renmaiwang.cn/s/h5hnk 《磁悬浮系统仿真在MATLAB Simulink中的实现与解析》磁悬浮系统,作为一种高科技的运输和控制技术,利用磁力使物体悬浮在空中,实现了无摩擦、高速且平稳的运行。MATLAB作为强大的数学计算和建模工具,其Simulink模块则为系统仿真提供了便利。本篇文章将深入探讨如何在MATLAB Simulink环境中建立和分析磁悬浮系统的仿真模型,以及Hassan H.Khalil非线性系统练习题1.18的相关应用。我们需要了解磁悬浮系统的基本原理。系统主要由电磁铁、传感器和控制器三部分组成。电磁铁通过电流产生磁场,与物体的磁性材料相互作用,实现悬浮;传感器检测物体的位置信息,反馈给控制器;控制器根据反馈信息调整电磁铁的电流,以维持悬浮状态的稳定。在MATLAB Simulink中,我们可以构建一个包含这些元素的模型。模型通常包括以下几个部分:1. **输入模块**:用于输入控制信号,如电流指令或参考位置。2. **控制器模块**:可以是PID控制器、滑模控制器等,设计目标是根据传感器的反馈信息调整输入,以实现悬浮目标。3. **磁力模型模块**:描述电磁铁与悬浮物体之间的磁力关系,通常涉及到磁场的计算。4. **动态模型模块**:表示物体的运动方程,包括悬浮物体的运动状态(如位置、速度)随时间的变化。5. **传感器模块**:模拟检测物体位置的传感器,产生反馈信号。6. **比较与反馈模块**:将实际位置与设定位置进行比较,形成误差信号,供给控制器。Hassan H.Khalil的非线性系统练习题1.18是针对磁悬浮系统的一种特定问题,可能涉及非线性动态特性的分析,如饱和效应、耦合效应等。在Simulink中,我们可以通过设置不同的系统参数来模拟这些非线性特性,然后进行仿真,观察系统
2025-11-25 13:45:06 270B 完整源码
1
内容概要:本文详细介绍了非线性电液伺服系统的模型预测控制(MPC)。首先概述了非线性电液伺服系统的特点及其广泛应用领域,接着阐述了MPC作为先进控制策略的优势,如处理约束条件和适应时变系统的能力。然后重点讲解了为实现MPC控制所需建立的数学模型,包括系统的结构、参数和输入输出关系。此外,还提供了详细的PDF教程和MATLAB Simulink源程序,涵盖MPC基本原理、算法实现及应用案例。最后强调了S函数编写对于MPC控制的重要性,涉及系统的状态方程、输出方程和约束条件等内容。 适合人群:从事自动化控制系统研究与开发的技术人员,尤其是对非线性电液伺服系统感兴趣的工程师。 使用场景及目标:①深入理解非线性电液伺服系统的特性和应用场景;②掌握MPC控制理论及其具体实现方法;③学会使用MATLAB Simulink进行仿真建模,并能够编写S函数以实现MPC控制。 阅读建议:读者可以通过阅读提供的PDF教程,结合MATLAB Simulink源程序进行实践操作,加深对MPC控制的理解。同时,在学习过程中遇到困难时,可以参考文中提到的相关知识点,逐步解决遇到的问题。
2025-11-17 19:48:44 731KB
1
内容概要:本文深入探讨了伺服系统中的模型追踪控制技术,特别是针对永磁同步电机(PMSM)的末端低频振动抑制。文章从理论推导出发,详细解释了模型追踪控制的工作原理,包括如何通过反馈和前馈控制策略实现对目标模型的跟踪。接着,文章介绍了基于离散化模型的仿真实践,展示了如何通过改变控制参数来优化系统响应。此外,还提供了详细的源代码和必要的函数库,帮助读者理解和实施这一技术。最后,讨论了1.5延时补偿技术的应用及其对系统稳定性和精度的提升。 适合人群:从事伺服控制系统设计的研究人员和技术人员,尤其是对永磁同步电机(PMSM)感兴趣的工程师。 使用场景及目标:适用于希望深入了解伺服系统模型追踪控制技术并应用于实际项目的人群。目标是掌握如何通过模型追踪控制技术有效抑制伺服系统的末端低频振动,提高系统的稳定性和精度。 其他说明:文章不仅提供了理论基础,还包括了具体的实现步骤和源代码,便于读者进行实践和验证。
2025-10-29 22:01:12 929KB
1
内容概要:本文深入探讨了伺服系统中的模型追踪控制技术,特别是针对永磁同步电机(PMSM)的末端低频振动抑制。文章从理论推导出发,逐步介绍如何构建精确的数学模型,并通过反馈和前馈控制策略实现对目标模型的有效跟踪。文中还详细描述了基于离散化模型的仿真实验,展示了如何通过调整控制参数优化系统性能。此外,作者提供了完整的源代码及其详细的注释,帮助读者理解和实践。最后,文章讨论了1.5延时补偿技术的应用,解决了实际应用中的延时问题,提高了系统的稳定性和精度。 适合人群:从事自动化控制、机电一体化领域的工程师和技术人员,尤其是对伺服系统有研究兴趣的专业人士。 使用场景及目标:适用于希望深入了解伺服系统模型追踪控制技术的研究人员和工程师,旨在解决实际工程中遇到的末端低频振动问题,提升系统的稳定性和精度。 其他说明:文章不仅提供了理论支持,还有丰富的实践指导,包括仿真设计和源代码分享,有助于读者快速上手并应用于实际项目中。
2025-10-29 22:00:50 570KB
1
"基于COMSOL模型的干热岩与超临界二氧化碳开采增强型地热系统模型研究:热流固耦合与高鲁棒性计算",COMSOL模型,地热模型,干热岩模型 超临界二氧化碳开采增强型地热系统地热模型 CO2-EGS,热流固耦合 模型收敛性好,可以根据自己的需求自由修改,计算速度快,鲁棒性好。 ,COMSOL模型; 地热模型; 干热岩模型; 超临界二氧化碳开采; 增强型地热系统; CO2-EGS; 热流固耦合; 模型收敛性好; 计算速度快; 鲁棒性好。,多尺度COMSOL地热及干热岩热流固耦合模型 在当前能源领域,地热能源作为一种清洁、可再生的自然资源,其开发和利用受到了广泛关注。尤其是随着增强型地热系统(Enhanced Geothermal Systems, EGS)技术的发展,人类对地热资源的开发能力得到了显著提高。而在众多EGS技术中,超临界二氧化碳(CO2)作为工作流体的CO2-EGS技术,以其高效热能转换和环保优势,成为了研究的热点。COMSOL Multiphysics是一款强大的多物理场模拟软件,它能够模拟热流固耦合等问题,为研究超临界二氧化碳开采干热岩地热能提供了重要的模拟工具。 本研究以COMSOL模型为基础,重点研究了干热岩与超临界二氧化碳相结合的增强型地热系统模型。在该系统中,超临界二氧化碳作为热交换介质,通过循环抽取地下的热能,并通过地面热交换设备转化为可用的热能或电能。研究中涉及了热流固耦合过程,即考虑了热能、流体流动和岩石应力变形的相互作用,这对于确保系统长期稳定运行至关重要。 研究成果表明,基于COMSOL模型的模拟计算具有良好的收敛性和高鲁棒性,这意味着模型能够快速而准确地响应不同工况的变化,并具有较强的容错能力。此外,模型的自由修改性使得研究人员可以根据实际需求调整参数和边界条件,从而获得更为精确的模拟结果。 探索地热能源模型与增强型地热系统的奇妙之旅涉及了对地热资源的分布、特性及开发技术的深入了解。模型地热模型与干热岩模型超临界二氧化碳开的研究,不仅涉及到地热资源的地质特性,还包括了对超临界二氧化碳流体特性的研究。这些研究工作为地热能源的高效开发提供了理论基础和技术支持。 在对地热能源模型与增强型地热系统的深入探索过程中,研究者们面临着多尺度问题的挑战。多尺度模型能够描述从宏观岩体尺度到微观裂隙尺度的不同物理过程,这对于准确模拟地热系统的复杂行为至关重要。因此,本研究中提到的多尺度COMSOL地热及干热岩热流固耦合模型能够为这一挑战提供解决方案,帮助研究者更好地理解地热系统的动态变化和响应。 通过这份研究,我们可以看到地热能源开发技术的无限可能性。科技领域对于地热能源模型和增强型地热系统的探究,不仅仅是对现有资源的开发,更是对未来能源科技的拓展。通过模型地热模型干热岩模型超临界二氧化碳的深入研究,我们能够更好地掌握地热资源的分布和特性,开发出更加高效和环境友好的地热能技术。 本研究通过COMSOL模型对干热岩与超临界二氧化碳相结合的增强型地热系统进行了深入探讨,涉及热流固耦合、多尺度模拟等关键技术问题。研究结果不仅加深了我们对地热能开发技术的理解,还为未来地热能源的高效和环保开发提供了重要的理论依据和技术支持。随着计算技术的不断进步和地热能源开发技术的持续创新,我们有理由相信地热能源将在未来的能源结构中占据更加重要的位置。
2025-10-21 11:44:25 1.37MB kind
1
利用MATLAB粒子群算法求解电动汽车充电站选址定容问题:结合交通流量与道路权重,IEEE33节点系统模型下的规划方案优化实现,基于粒子群算法的Matlab电动汽车充电站选址与定容规划方案,电动汽车充电站 选址定容matlab 工具:matlab 内容摘要:采用粒子群算法,结合交通网络流量和道路权重,求解IEEE33节点系统与道路耦合系统模型,得到最终充电站规划方案,包括选址和定容,程序运行可靠 ,选址定容; 粒子群算法; 交通网络流量; 道路权重; 充电站规划方案; IEEE33节点系统; 道路耦合模型; MATLAB程序。,Matlab在电动汽车充电站选址定容的优化应用
2025-10-19 18:01:50 1017KB 柔性数组
1
Ebsilon分布式能源系统模型及全套建模过程资料,包括燃气轮机+余热锅炉+汽轮机+溴化锂热泵机组,如图 含有详细建模过程,机组热平衡图,热力特性书,热泵设计参数原理等 ,Ebsilon分布式能源系统模型;建模过程资料;燃气轮机;余热锅炉;汽轮机;溴化锂热泵机组;详细建模过程;热平衡图;热力特性书;热泵设计参数原理。,Ebsilon分布式能源系统模型与完整建模过程资料 分布式能源系统是一种高效利用能源的方式,它通过将发电、供热(冷)和能量储存等多种功能集成在系统内,以提高能源的利用率和降低能源消耗。Ebsilon是一个专业的能源系统模拟软件,常用于设计和优化这些分布式能源系统。本文所涉及的资料,是对Ebsilon在分布式能源系统模型中的具体应用,涵盖了从燃气轮机到溴化锂热泵机组的整个建模过程。 燃气轮机是分布式能源系统中的关键设备之一,它利用燃烧天然气产生的高温高压气体驱动涡轮旋转,并通过发电机转换为电能。在系统中,燃气轮机排出的废热会通过余热锅炉进一步利用,余热锅炉可以将这些废热转换成蒸汽,用于驱动汽轮机发电或供热。汽轮机在发电领域是成熟的技术,通过蒸汽推动涡轮旋转,将热能转化为机械能,再通过发电机转换成电能。 溴化锂热泵机组是另一种在分布式能源系统中常见的设备,它可以利用吸收式制冷原理进行制冷或供热。溴化锂热泵在吸收热能的同时能够释放冷量,因此非常适合用于需要同时满足供冷和供热需求的场合。溴化锂热泵机组的设计参数原理是关键,它涉及到热泵的效率、运行的稳定性和经济性。 本套建模过程资料详细描述了如何利用Ebsilon软件来模拟上述设备组成的分布式能源系统,包括了燃气轮机、余热锅炉、汽轮机和溴化锂热泵机组的模型构建。同时,还包含了热平衡图和热力特性书,热平衡图是分析和设计能源系统时的重要工具,它展示了系统中能量流动和转换的关系。热力特性书则是对系统中各个部件的工作特性进行详细描述,这些信息对于优化能源系统的性能至关重要。 在建模过程中,需要详细分析每个设备的热力学过程和工质的状态变化,根据设备的输入输出特性建立数学模型。通过模拟软件的帮助,可以对整个系统的性能进行预测和优化。例如,可以研究不同操作条件下的系统响应,评估各种设备配置对系统效率的影响,或者进行经济性分析,找出成本和能源消耗之间的最佳平衡点。 Ebsilon软件提供的模拟功能,允许设计师在设备购买或安装之前,对整个系统进行全面的评估。这样可以减少实际操作中可能遇到的问题,提高系统的可靠性,并确保在投入运行后能够达到预期的效率和性能。通过这些详细的建模过程资料,设计人员能够更加深入地理解和掌握分布式能源系统的设计原理和运行特性。 总结而言,本套资料为能源系统设计师提供了一套完整的建模方法和流程,从燃气轮机到溴化锂热泵机组,覆盖了分布式能源系统的关键组件,并详细解释了如何利用Ebsilon软件来优化整个系统的性能。通过这些详细资料的学习,设计师们将能够更好地实现能源的高效利用,满足日益增长的能源需求,同时减少环境影响。
2025-09-08 17:51:20 925KB 正则表达式
1
在Simulink仿真模型中,一般采用传递函数来仿真,往往通过具体的传递函数去设计控制器,如调节PI控制器的Kp、Ki参数等。 可是在实际工程领域中,实际系统的微分方程难得建立,通过理想的传递函数设计的控制器参数往往达不到好的效果,究其原因是仿真模型的传递函数不准确导致的,那么如何得到系统准确的传递函数呢? 基于此,工程领域中常用即为系统辨识,本文主要利用“扫频”来展开讲解。 系统辨识是控制工程中的重要概念,它涉及从实际系统中获取数据并构建数学模型的过程。在Simulink中,通常使用传递函数进行仿真和控制器设计,如PI控制器的参数Kp和Ki的调整。然而,实际工程问题中,系统的微分方程很难精确建立,这可能导致基于理想传递函数设计的控制器性能不佳。为了解决这个问题,可以运用系统辨识技术,特别是通过“扫频”方法来获取更准确的系统模型。 扫频方法的基本原理是通过施加不同频率的正弦信号作为输入到系统中,记录输出信号的幅值和相位。在Matlab的系统辨识工具箱中,这些数据可以用来估算系统的传递函数。具体步骤如下: 1. 设定一个假想的被控对象的传递函数,例如G(s) = 1/s + 2。 2. 创建一个Simulink扫频模型,使用定步长的龙格库塔求解器(ode4)。 3. 设置输入信号为不同频率的正弦波,如A=5sin(2π*1*t),并保存输入和输出数据到工作空间。 4. 利用Excel拟合工具分析输入和输出信号的幅值和相位。 5. 在系统辨识工具箱中导入频域数据,并选择传递函数模型进行估计。 6. 根据实际需求选择传递函数的零极点数量,然后进行估计。 7. 观察估计结果,评估模型的准确性。 在本例中,通过一系列不同频率的正弦信号,得到了满足预期的辨识结果:G(s) = 1.16/s + 2.419,与原始假设的传递函数接近,说明辨识过程是成功的。 系统辨识技术在控制工程中有广泛应用,特别是在航空航天等领域,因为实际系统往往难以建立理想的数学模型。通过辨识技术,可以修正理论模型,提高控制算法在实际系统中的表现,避免仿真效果和实际效果之间的差距。 总结来说,系统辨识是解决实际系统建模困难的关键手段,而单点扫频是一种实用的辨识方法。通过Simulink和Matlab的系统辨识工具箱,可以有效地对系统进行建模,提高控制器设计的精度和实用性。对于更复杂的系统,还可以考虑使用连续扫频等其他辨识技术,以获得更详尽的系统特性。
2025-09-06 14:20:35 2.11MB 模型辨识
1