针对足球机器人运用传统快速扩展随机树(RRT)算法进行路径规划时随机性大的问题,提出了一种目标引力式的RRT路径规划算法。该算法在RRT算法的基础上引入了一个目标引力函数,避免了扩展随机树向目标点以外的方向生长,改进了快速扩展随机树缺乏确定性的问题,提高了足球机器人在路径规划方面的效率。仿真实验结果表明,该算法能够得到最佳路径,同时可以有效提高路径的规划速度。
1
针对现有航迹规划算法缺乏同时具备快速性和最优性的问题,本文提出了一种新的无人机航迹规划算法,在快速扩展随机树算法基础上,引入一个方向参数,并采用 Dijkstra 算法对改进算法产生的冗余节点进行处理,得到了一条优化的航迹。最后采用 K 航迹法进行航迹平滑处理,使得规划的航迹成为无人机的可飞航路。仿真结果表明,该算法能够在有效提高航迹产生速度的同时,可以得到近似最优的航迹。
2023-02-05 18:54:33 499KB 航迹规划
1
RRT(快速探索随机树) 是一种通用的方法,不管什么机器人类型、不管自由度是多少、不管约束有多复杂都能用。而且它的原理很简单,这是它在机器人领域流行的主要原因之一。不过它的缺点也很明显,它得到的路径一般质量都不是很好,例如可能包含棱角,不够光滑,通常也远离最优路径。
2022-04-25 15:11:37 4KB rrt
1
路径规划是移动机器人的重要研究内容。快速扩展随机树(Rapidly-Exploring Random Tree,RRT)算法因在机器人路径规划中的成功应用,自提出以来就得到了极大的研究与发展。快速扩展随机树作为一种新颖的随机节点采样算法,相对传统路径规划算法,具有建模时间短、搜索能力强、方便添加非完整约束等优点。介绍了快速扩展随机树算法的基本原理与性质,并从单向随机树扩展、多向随机树扩展、其他改进等方面概括了算法的研究现状。最后,展望了算法未来的研究方向与挑战。
2021-12-24 17:09:16 866KB 论文研究
1
基于基于快速扩展随机树(RRT)的三维路径规划算法,matlab版本
2021-05-03 21:05:08 60KB 快速扩展随机树 RRT matlab
1
对传统的快速扩展随机数(RRT)算法matlab的仿真实验,只为给读者提供最原始简介的实验环境,避免因为过度的改进造成不必要的理解误区。该实验程序可自由定义栅格地图大小,自由定义障碍物的摆放位置与数量,同时也可以生成随机地图验证自己的算法。希望可以帮到更多人。
2021-04-15 13:37:20 64KB RRT 快速扩展随机树 路径规划 导航
1
快速扩展随机树(RRT)算法的实现 visual c++开发 rar格式,无需解压密码
2019-12-21 20:23:31 803KB 快速扩展随机树 RRT 算法
1