MapReduce-机器学习 一些机器学习算法的 Map-Reduce 实现
2023-03-16 12:37:40 36KB Python
1
DoubleML-Python中的双机学习 Python软件包DoubleML提供了的双重/无偏机器学习框架的 。 它建立在(Pedregosa等,2011)。 请注意,Python软件包是与基于的R twin一起开发的。 R包也可以在和 。 文档和维护 文档和网站: : DoubleML当前由和维护。 可以将错误报告给问题跟踪器,为 。 主要特点 双重/无偏机器学习 部分线性回归模型(PLR) 部分线性IV回归模型(PLIV) 互动回归模型(IRM) 交互式IV回归模型(IIVM) DoubleML的面向对象的实现非常灵活。 模型类DoubleMLPLR , Doub
2023-03-15 23:00:41 207KB python data-science machine-learning statistics
1
DeepSpeech:DeepSpeech是一种开源嵌入式(离线,设备上的)语音到文本引擎,可以在从Raspberry Pi 4到大功率GPU服务器的各种设备上实时运行
2023-03-15 21:18:57 6.19MB machine-learning embedded deep-learning offline
1
Algebra, Topology, Differential Calculus, and Optimization TheoryFor Computer Science and Machine LearningJean Gallier and Jocelyn Quaintance Department of Computer and Information ScienceUniversity of Pennsylvania Philadelphia, PA 19104, USA e-mail: jean@cis.upenn.educ:copyright: Jean GallierAugust 2, 20192ContentsContents 31 Introduction 172 Groups, Rings, and Fields 19 2.1 Groups, Subgroups, Cosets . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2 Cyclic Groups . . . . . . . . . .
2023-03-15 20:47:53 19.85MB Papers Specs Decks Manuals
1
对抗图书馆 该库包含与PyTorch中实施的对抗性攻击有关的各种资源。 它针对寻求最新攻击实施方案的研究人员。 编写代码是为了最大程度地提高效率(例如,通过偏爱PyTorch的底层函数),同时保持简单性(例如,避免抽象)。 因此,大多数库(尤其是攻击)都是使用纯函数实现的(只要有可能)。 在着重于攻击的同时,该库还提供了一些与对抗性攻击有关的实用程序:距离(SSIM,CIEDE2000,LPIPS),可见回调,预测,损失和辅助功能。 最值得注意的是,来自utils/attack_utils.py的功能run_attack对具有给定输入和标签且具有固定批处理大小的模型进行了攻击,并报告了与复杂性相关的指标(运行时和向前/向后传播)。 依存关系 该库的目标是使用最新版本的PyTorch进行更新,以便可以定期更新依赖项(可能会导致重大更改)。 pytorch> = 1.7.0 火炬视觉>
1
Hands-On Machine Learning with Scikit-Learn and TensorFlow.zip
2023-03-14 21:00:29 42.59MB Machine Learning
1
超网络 适用于ResNet的PyTorch实施(Ha等人,ICLR 2017)。该代码主要用于CIFAR-10和CIFAR-100,但是将其用于任何其他数据集都非常容易。将其用于不同深度的ResNet架构也非常容易。 我们使用pytorch闪电来控制整个管道。 怎么跑 python train.py --dataset {cifar10/cifar100} --gpus $num_gpu -j $num_workers --distributed_backend ddp 已过期。此回购协议已将HyperNet修改为逐层实施,使用起来更加方便。需要注意的是,我们发现尽管作者设置了in_size和out_size 。实际上,您应该将in_size和out_size设置为16,否则将失败。
1
主成分回归代码matlab及示例机器学习(Coursera) 这是我对Andrew Ng教授的所有机器学习(Coursera)编程任务和测验的解决方案。 完成本课程后,您将对机器学习算法有一个广泛的了解。 首先尝试自己解决所有任务,但是如果您陷入困境,请随时浏览代码。 内容 讲座幻灯片 编程分配的解决方案 解决测验 斯坦福大学的吴安德(Andrew Ng) 第一周 视频:简介 测验:简介 视频:具有一个变量的线性回归 测验:具有一个变量的线性回归 第二周 视频:具有多个变量的线性回归 测验:具有多个变量的线性回归 视频:八度/ Matlab教程 测验:八度/ Matlab教程 编程分配:线性回归 第三周 视频:Logistic回归 测验:逻辑回归 视频:正则化 测验:正则化 编程分配:逻辑回归 第四周 视频:神经网络:表示 测验:神经网络:表示形式 编程作业:多类分类和神经网络 第五周 视频:神经网络:学习 测验:神经网络:学习 编程作业:神经网络学习 第六周 视频:应用机器学习的建议 测验:应用机器学习的建议 视频:编程分配:正则线性回归和偏差/方差 机器学习系统设计 测验:机器学习
2023-03-14 10:59:50 73.39MB 系统开源
1
在动态图像文件行为的分布式图像可视化中,使用GAN模拟恶意软件作者以提供主动保护 引用为: VS Bhaskara, and D. Bhattacharyya. arXiv preprint arXiv:1807.07525 [stat.ML] (2018) 。 引用代码 训练的WGAN-GP模型基于上发布的代码。 我们将带有improved_wgan_training/gan_64x64.py脚本与GoodGenerator和GoodDiscriminator函数定义的网络体系结构GoodDiscriminator使用。 每个通道使用的64位dHash基于上的实现。 在color_dHash192.py脚本中显示了通过在彩色图像的通道上串联dHash来哈希的扩展。 数据集 dataset_filedetails.csv :列出文件SHA256哈希值和所使用的12,006个不同可执行文
2023-03-09 20:35:43 4.94MB security machine-learning deep-learning Python
1
sklearn-cookbook-zh:[翻译] Scikit-learn秘籍
2023-03-08 17:30:47 1.53MB python machine-learning book scikit-learn
1