带S-NET提取的MSMARCO(提取网) 的CNTK(Microsoft深度学习工具包)实现提取部分的并进行了一些修改。 该项目是为数据集设计的 代码结构基于 支持MSMARCO V1和V2! 要求 这是一些培训和评估所需的库。 一般的 python3.6 cuda-9.0(需要CNTK) openmpi-1.10(需要CNTK) gcc> = 6(需要CNTK) Python 请参考requirements.txt 使用预先训练的模型进行评估 此存储库提供了经过预训练的模型和经过预处理的验证数据集以测试性能 请下载和经过,并将它们分别放在MSMARCO/data和MSMARCO根目录中,然后在正确的位置将其解压缩。 代码结构应该像 MSMARCO ├── data │   ├── elmo_embedding.bin │   ├── test.tsv │   ├── vo
2023-04-13 15:17:51 2.48MB nlp cntk question-answering machine-comprehension
1
匹配LSTM 在这里我们在SQuAD上实现MatchLSTM(Wang and Jiang 2016)模型,R-Net(Wang et al.2017)模型和M-Reader(Hu et al.2017)(Rajpurkar et al.2016)。 也许有些细节与最初的论文有所不同。 要求 python3 水蟒 hdf5 实验 Match-LSTM +模型与Match-LSTM略有不同。 用GRU代替LSTM 添加类似r-net的门控注意匹配 添加单独的字符级编码 添加其他功能,例如M-Reader 在一个GRU层上添加聚合层 指针网中的初始GRU第一状态在匹配层之后添加全连接层 评估SQuAD开发人员集的结果: 模型 EM 11 Match-LSTM +(我们的版本) 70.2 79.2 Match-LSTM(纸) 64.1 73.9 R-NET-45(我
2021-10-26 18:03:51 56KB mrc pytorch squad machine-comprehension
1