pylmnn:大型边距最近的python实现

上传者: 42137723 | 上传时间: 2023-04-12 12:29:56 | 文件大小: 32KB | 文件类型: ZIP
派尔蒙 PyLMNN是用于在纯python中进行度量学习的算法的实现。 此实现紧密遵循在找到的Kilian Weinberger的原始MATLAB代码。 此版本解决了无限制的优化问题,并使用L-BFGS作为后端优化器找到了线性变换。 该软件包还可以使用出色的软件包通过贝叶斯优化找到LMNN的最佳超参数。 安装 该代码是在Ubuntu 16.04下的python 3.5中开发的,并且也在Ubuntu 18.04和python 3.6下进行了测试。 您可以使用以下命令克隆存储库: git clone https://github.com/johny-c/pylmnn.git 或通过pip安装它: pip3 install pylmnn 依存关系 numpy的> = 1.11.2 scipy> = 0.18.1 scikit_learn> = 0.18.1 可选依赖项 如果要使用超参

文件下载

资源详情

[{"title":"( 23 个子文件 32KB ) pylmnn:大型边距最近的python实现","children":[{"title":"pylmnn-master","children":[{"title":"setup.py <span style='color:#111;'> 1.62KB </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 678B </span>","children":null,"spread":false},{"title":"requirements.txt <span style='color:#111;'> 62B </span>","children":null,"spread":false},{"title":"LICENCE <span style='color:#111;'> 1.48KB </span>","children":null,"spread":false},{"title":"examples","children":[{"title":"demo_find_hyperparams.py <span style='color:#111;'> 464B </span>","children":null,"spread":false},{"title":"sklearn_lmnn_pipeline_demo.ipynb <span style='color:#111;'> 3.21KB </span>","children":null,"spread":false},{"title":"minimal.py <span style='color:#111;'> 1015B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"demo_olivetti.py <span style='color:#111;'> 955B </span>","children":null,"spread":false},{"title":"demo_plot_features.py <span style='color:#111;'> 3.05KB </span>","children":null,"spread":false}],"spread":true},{"title":"README.rst <span style='color:#111;'> 3.15KB </span>","children":null,"spread":false},{"title":"tests","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"test_bayesopt.py <span style='color:#111;'> 405B </span>","children":null,"spread":false},{"title":"test_lmnn.py <span style='color:#111;'> 21.68KB </span>","children":null,"spread":false}],"spread":true},{"title":"docs","children":[{"title":"Makefile <span style='color:#111;'> 580B </span>","children":null,"spread":false},{"title":"api.rst <span style='color:#111;'> 422B </span>","children":null,"spread":false},{"title":"index.rst <span style='color:#111;'> 450B </span>","children":null,"spread":false},{"title":"conf.py <span style='color:#111;'> 5.71KB </span>","children":null,"spread":false},{"title":"readme.rst <span style='color:#111;'> 27B </span>","children":null,"spread":false}],"spread":true},{"title":"pylmnn","children":[{"title":"__init__.py <span style='color:#111;'> 104B </span>","children":null,"spread":false},{"title":"lmnn.py <span style='color:#111;'> 49.54KB </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 2.41KB </span>","children":null,"spread":false},{"title":"bayesopt.py <span style='color:#111;'> 4.17KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明