简介:该垃圾分类项目主要在于对各种垃圾进行所属归类,本次项目采用keras深度学习框架搭建卷积神经网络模型实现图像分类,最终移植在树莓派上进行实时视频流的垃圾识别。 前期:主要考虑PC端性能,并尽可能优化模型大小,训练可采用GPU,但调用模型测试的时候用CPU运行,测试帧率和准确性(测试10张左右图像的运行时间取平均值或实时视频流的帧率)。 后期:部署在树莓派端,在本地进行USB摄像头实时视频流的垃圾分类(归类)。 框架语言: keras+python。 PC端: Keras: 2.2.0 Opencv: 3.4 Python: 3.6 Numpy:1.16
2023-03-26 19:11:03 4.17MB 树莓派 keras 垃圾识别 深度学习
1
CNN_python_卷积神经网络matlab代码_CNN
2023-03-25 11:02:49 94KB
1
深度学习通过训练样本进行特征识别,已经被广泛应用于道路提取领域。该方法不局限于特定类型的影像,但是受训练样本数量和计算机硬件的限制,所提取的道路会有断裂和噪声。针对上述问题,使用VGG卷积神经网络对道路进行初步提取后引入张量投票方法进行优化处理。首先通过影像变换、随机裁剪、过采样等方法对样本进行多模式扩充,进而训练VGG卷积神经网络模型;其次利用该网络从原始影像中初步分割道路面,接着对道路面的二值影像进行张量投票获取道路的显著性信息;最后在特征提取时针对显著性信息加入阈值获取道路面。实验结果表明,所提方法提取道路的召回率与正确率均达90%以上,与其他传统方法相比具有更高的精度,验证了所提方法的有效性。
2023-03-21 15:04:09 14.68MB 图像处理 道路提取 卷积神经 张量投票
1
为了使采摘机器人在收获番茄时更加精准地识别目标果实,采用改进后的 Cascade rcnt网络对温室内的番茄果实进行目标检测。将 Cascade rann网络中的非极大值抑制算法替换为Sof-NMS( soft non- maximum suppression)算法,采用适合番茄形状的锚框,增强网络对重叠果实的识别能力,与原 Cascade rann网络相比,目标识别的准确率提高了近2%,在识别番茄果实的同时,该网络对番茄的成熟度进行了简单分类。为进一步验证网络性能,将改进网络与经典的 Faster rann网络和YOO3网络进行对比。实验结果表明,改进网络能够准确地识别岀番茄果实,并对成熟番茄与未成熟番茄做出区分。该方法可为温室内番茄果实的采摘提供技术支持。
2023-03-18 16:54:52 2.59MB 神经网络机器人
1
Matlab如何指定gpu运行代码用于光场重构的高维密集残差卷积神经网络 该项目是Tensorflow的实现 “用于光场重构的高维密集残差卷积神经网络”, IEEE模式分析和机器智能交易,南梦,海登·科赫。 所以,孙星,林德霖,2019年。 “用于光场超分辨率的高阶残差网络” ,第34届AAAI人工智能会议,孟楠,吴晓飞,刘建壮,林德伦,2020年。 要求 的Python2 == 2.7 Python3> = 3.5 Tensorflow r1。*> = r1.8 tqmd OpenCV Unrar 安装 下载专案 git clone https://github.com/monaen/LightFieldReconstruction.git --branch master --single-branch 训练 用于空间或角度或超分辨率任务的训练模型 训练模型以获得空间超分辨率(例如Sx4)。 您需要为不同的空间SR任务指定gamma_S 。 python train_SpatialSR.py --datadir data/train/Spatial/5x5 --gamma_S 4 -
2023-03-16 21:22:01 218KB 系统开源
1
可以保存加载模型、有评价指标和训练过程的损失正确率图像,预测值和真实值对比等、正确率很高 绝对不是垃圾代码!!!!
2023-03-15 18:30:31 10.91MB python 机器学习 卷积神经网络 LSTM
1
基于VGGNet卷积神经网络的表情识别。
2023-03-15 07:29:20 167KB 研究论文
1
论文仅供参考学习使用。 通过融合浅层网络高分辨率的细节特征来改进 PSPNet-50 网络模型,减小随着网络的加深导致空间信息的丢失对分割边缘细节的影响。然后通过交互分割算法获取一至两幅图像的分割先验,将少量分割先验融合到新的模型中,通过网络的再学习来解决前景/背景的分割歧义以及多图像的分割一致性。最后通过构建全连接条件随机场模型,将深度卷积神经网络的识别能力和全连接条件随机场优化的定位精度耦合在一起,更好地处理边界定位问题。
1
先安装环境 ----> 使用data_classify.py文件进行训练集与测试集分割 ----> 在进行训练即可 数据准备:当前数据存放 data_name 文件夹内 文件夹名就是类别名,n个类别就是n个文件夹 目录主要结构组成: model_AlexNet.py ----> 自己建的AlexNet模型(可选其他模型) model_Vgg16.py ----> pytorch自带更改的模型(可选其他模型) train.py ----> 用于训练模型 test.py ----> 用于测试模型 辅助文件: data_classify.py ----> 将 data_name内的类别分为训练集与测试集。 ​ 注意查看代码内容,包含argparse模块 清除单通道图像 -----> 数据清洗,处理异常图像 旧版数据加载 -----> 用于学习图像 数据加载
1
资源给大家带来一个利用卷积神经网络(CNN)进行中文OCR识别,实现自己的一个OCR识别工具。 一个OCR识别系统,其目的很简单,只是要把影像作一个转换,使影像内的图形继续保存、有表格则表格内资料及影像内的文字,一律变成计算机文字,使能达到影像资料的储存量减少、识别出的文字可再使用及分析,这样可节省人力打字的时间。
2023-03-07 19:34:57 2.34MB OCR 人工智能 卷积神经网络
1