Matlab如何指定gpu跑代码-LightFieldReconstruction:用于光场重构的高维密集残差卷积神经网络

上传者: 38582719 | 上传时间: 2023-03-16 21:22:01 | 文件大小: 218KB | 文件类型: ZIP
Matlab如何指定gpu运行代码用于光场重构的高维密集残差卷积神经网络 该项目是Tensorflow的实现 “用于光场重构的高维密集残差卷积神经网络”, IEEE模式分析和机器智能交易,南梦,海登·科赫。 所以,孙星,林德霖,2019年。 “用于光场超分辨率的高阶残差网络” ,第34届AAAI人工智能会议,孟楠,吴晓飞,刘建壮,林德伦,2020年。 要求 的Python2 == 2.7 Python3> = 3.5 Tensorflow r1。*> = r1.8 tqmd OpenCV Unrar 安装 下载专案 git clone https://github.com/monaen/LightFieldReconstruction.git --branch master --single-branch 训练 用于空间或角度或超分辨率任务的训练模型 训练模型以获得空间超分辨率(例如Sx4)。 您需要为不同的空间SR任务指定gamma_S 。 python train_SpatialSR.py --datadir data/train/Spatial/5x5 --gamma_S 4 -

文件下载

资源详情

[{"title":"( 68 个子文件 218KB ) Matlab如何指定gpu跑代码-LightFieldReconstruction:用于光场重构的高维密集残差卷积神经网络","children":[{"title":"LightFieldReconstruction-master","children":[{"title":".gitignore <span style='color:#111;'> 1.82KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 10.56KB </span>","children":null,"spread":false},{"title":"utils","children":[{"title":"convolve4d.py <span style='color:#111;'> 7.53KB </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 13.44KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"augmentation.py <span style='color:#111;'> 3.35KB </span>","children":null,"spread":false},{"title":"layers.py <span style='color:#111;'> 11.97KB </span>","children":null,"spread":false}],"spread":true},{"title":"evaluation_ViewSynthesis_Patchwise.py <span style='color:#111;'> 13.47KB </span>","children":null,"spread":false},{"title":"evaluation_ViewSynthesis.py <span style='color:#111;'> 12.28KB </span>","children":null,"spread":false},{"title":"networks","children":[{"title":"HDDRNet_A3x3_7x7.py <span style='color:#111;'> 7.72KB </span>","children":null,"spread":false},{"title":"HDDRNet_Sx2.py <span style='color:#111;'> 11.53KB </span>","children":null,"spread":false},{"title":"HDDRNet_Sx4.py <span style='color:#111;'> 11.83KB </span>","children":null,"spread":false},{"title":"HDDRNet_Ax4.py <span style='color:#111;'> 7.73KB </span>","children":null,"spread":false},{"title":"HDDRNet_Sx3.py <span style='color:#111;'> 11.54KB </span>","children":null,"spread":false},{"title":"HDDRNet_Ax3.py <span style='color:#111;'> 7.72KB </span>","children":null,"spread":false},{"title":"HDDRNet_Ax2.py <span style='color:#111;'> 7.73KB </span>","children":null,"spread":false},{"title":"HDDRNet_Sx2Ax2.py <span style='color:#111;'> 11.54KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"HDDRNet_Sx3Ax2.py <span style='color:#111;'> 11.54KB </span>","children":null,"spread":false},{"title":"HDDRNet_AAAI.py <span style='color:#111;'> 9.64KB </span>","children":null,"spread":false}],"spread":false},{"title":"analysis","children":[{"title":"README.md <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"compare_connection.pdf <span style='color:#111;'> 19.23KB </span>","children":null,"spread":false},{"title":"Ablation Study.ipynb <span style='color:#111;'> 139.18KB </span>","children":null,"spread":false},{"title":"kernel_compare.pdf <span style='color:#111;'> 13.89KB </span>","children":null,"spread":false}],"spread":true},{"title":"pretrained_models","children":[{"title":"download_pretrained_models_Sx2Ax2.sh <span style='color:#111;'> 4.93KB </span>","children":null,"spread":false},{"title":"download_pretrained_models_HDDRNet_Ax3.sh <span style='color:#111;'> 3.98KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 2.76KB </span>","children":null,"spread":false},{"title":"download_pretrained_models_M-HDDRNet_Sx3.sh <span style='color:#111;'> 5.02KB </span>","children":null,"spread":false},{"title":"download_pretrained_models_M-HDDRNet_Sx2.sh <span style='color:#111;'> 4.87KB </span>","children":null,"spread":false},{"title":"download_pretrained_models_HDDRNet_Sx3.sh <span style='color:#111;'> 4.97KB </span>","children":null,"spread":false},{"title":"download_pretrained_models_HDDRNet_Ax2.sh <span style='color:#111;'> 3.98KB </span>","children":null,"spread":false},{"title":"download_pretrained_models_A3x3_7x7.sh <span style='color:#111;'> 4.13KB </span>","children":null,"spread":false},{"title":"download_pretrained_models_M-HDDRNet_Ax2.sh <span style='color:#111;'> 4.00KB </span>","children":null,"spread":false},{"title":"download_pretrained_models_M-HDDRNet_Sx4.sh <span style='color:#111;'> 5.02KB </span>","children":null,"spread":false},{"title":"download_pretrained_models_HDDRNet_Sx4.sh <span style='color:#111;'> 4.97KB </span>","children":null,"spread":false},{"title":"download_pretrained_models_M-HDDRNet_Ax3.sh <span style='color:#111;'> 4.00KB </span>","children":null,"spread":false},{"title":"download_pretrained_models_HDDRNet_Ax4.sh <span style='color:#111;'> 3.98KB </span>","children":null,"spread":false},{"title":"download_pretrained_models_HDDRNet_Sx2.sh <span style='color:#111;'> 4.83KB </span>","children":null,"spread":false},{"title":"HDDRNet","children":[{"title":"README.md <span style='color:#111;'> 851B </span>","children":null,"spread":false}],"spread":false},{"title":"Others","children":[{"title":"README.md <span style='color:#111;'> 324B </span>","children":null,"spread":false}],"spread":false},{"title":"M-HDDRNet","children":[{"title":"README.md <span style='color:#111;'> 889B </span>","children":null,"spread":false}],"spread":false},{"title":"download_pretrained_models_M-HDDRNet_Ax4.sh <span style='color:#111;'> 4.00KB </span>","children":null,"spread":false}],"spread":false},{"title":"evaluation_on_dataset.py <span style='color:#111;'> 14.27KB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false},{"title":"evaluation.m <span style='color:#111;'> 1.81KB </span>","children":null,"spread":false},{"title":"tool","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"log_config.py <span style='color:#111;'> 604B </span>","children":null,"spread":false}],"spread":true},{"title":"train_ViewSynthesis.py <span style='color:#111;'> 18.22KB </span>","children":null,"spread":false},{"title":"train_SpatialAngularSR.py <span style='color:#111;'> 17.97KB </span>","children":null,"spread":false},{"title":"checkpoints","children":[{"title":"README.md <span style='color:#111;'> 0B </span>","children":null,"spread":false}],"spread":true},{"title":"train_SpatialSR.py <span style='color:#111;'> 17.82KB </span>","children":null,"spread":false},{"title":"results","children":[{"title":"README.md <span style='color:#111;'> 42B </span>","children":null,"spread":false}],"spread":false},{"title":"evaluation_SpatialSR.py <span style='color:#111;'> 16.71KB </span>","children":null,"spread":false},{"title":"vgg19","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"vgg19.py <span style='color:#111;'> 4.27KB </span>","children":null,"spread":false},{"title":"download_pretrained_vgg.sh <span style='color:#111;'> 4.99KB </span>","children":null,"spread":false}],"spread":false},{"title":"data","children":[{"title":"evaluation","children":[{"title":"README.md <span style='color:#111;'> 59B </span>","children":null,"spread":false}],"spread":false},{"title":"README.md <span style='color:#111;'> 504B </span>","children":null,"spread":false},{"title":"train","children":[{"title":"README.md <span style='color:#111;'> 49B </span>","children":null,"spread":false},{"title":"Angular","children":[{"title":"README.md <span style='color:#111;'> 79B </span>","children":null,"spread":false}],"spread":false},{"title":"SpatialAngular","children":[{"title":"README.md <span style='color:#111;'> 91B </span>","children":null,"spread":false}],"spread":false},{"title":"Spatial","children":[{"title":"README.md <span style='color:#111;'> 79B </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"download_occlusions20.sh <span style='color:#111;'> 7.27KB </span>","children":null,"spread":false},{"title":"download_reflective20.sh <span style='color:#111;'> 7.27KB </span>","children":null,"spread":false},{"title":"download_evaluation_data.sh <span style='color:#111;'> 3.59KB </span>","children":null,"spread":false},{"title":"testset","children":[{"title":"README.md <span style='color:#111;'> 55B </span>","children":null,"spread":false}],"spread":false},{"title":"download_trainingsamples.sh <span style='color:#111;'> 3.98KB </span>","children":null,"spread":false}],"spread":false},{"title":"evaluation_SpatialAngularSR.py <span style='color:#111;'> 15.21KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明