数据挖掘红酒分类实验报告及代码.zip

上传者: 38997872 | 上传时间: 2021-05-16 16:00:10 | 文件大小: 327KB | 文件类型: ZIP
一份基于红酒数据集的分类方法对比的实验报告,关联机器学习与数据挖掘,采用朴素贝叶斯与线性逻辑回归方法进行比较

文件下载

资源详情

[{"title":"( 27 个子文件 327KB ) 数据挖掘红酒分类实验报告及代码.zip","children":[{"title":"数据挖掘红酒分类实验报告及代码","children":[{"title":"wine","children":[{"title":".project <span style='color:#111;'> 380B </span>","children":null,"spread":false},{"title":"bin","children":[{"title":"classification","children":[{"title":"LR_Feature_Scaling.class <span style='color:#111;'> 776B </span>","children":null,"spread":false},{"title":"wqRegularizedLogisticRegression.class <span style='color:#111;'> 5.76KB </span>","children":null,"spread":false},{"title":"LR_Gradient_Descent.class <span style='color:#111;'> 877B </span>","children":null,"spread":false},{"title":"NB_Gaussian_Distribution.class <span style='color:#111;'> 611B </span>","children":null,"spread":false},{"title":"NB_Get_MV.class <span style='color:#111;'> 1.34KB </span>","children":null,"spread":false},{"title":"wqNaiveBayesian.class <span style='color:#111;'> 4.79KB </span>","children":null,"spread":false},{"title":"LR_Sigmoid.class <span style='color:#111;'> 521B </span>","children":null,"spread":false},{"title":"MOs.class <span style='color:#111;'> 7.94KB </span>","children":null,"spread":false},{"title":"LR_Cost_Function.class <span style='color:#111;'> 1.01KB </span>","children":null,"spread":false},{"title":"NB_Gaussian_Value.class <span style='color:#111;'> 849B </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"src","children":[{"title":"classification","children":[{"title":"LR_Gradient_Descent.java <span style='color:#111;'> 765B </span>","children":null,"spread":false},{"title":"wqRegularizedLogisticRegression.java <span style='color:#111;'> 6.88KB </span>","children":null,"spread":false},{"title":"NB_Gaussian_Distribution.java <span style='color:#111;'> 281B </span>","children":null,"spread":false},{"title":"LR_Sigmoid.java <span style='color:#111;'> 208B </span>","children":null,"spread":false},{"title":"MOs.java <span style='color:#111;'> 8.01KB </span>","children":null,"spread":false},{"title":"NB_Get_MV.java <span style='color:#111;'> 1.25KB </span>","children":null,"spread":false},{"title":"LR_Cost_Function.java <span style='color:#111;'> 858B </span>","children":null,"spread":false},{"title":"LR_Feature_Scaling.java <span style='color:#111;'> 611B </span>","children":null,"spread":false},{"title":"NB_Gaussian_Value.java <span style='color:#111;'> 556B </span>","children":null,"spread":false},{"title":"wqNaiveBayesian.java <span style='color:#111;'> 5.44KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"Jama.jar <span style='color:#111;'> 35.14KB </span>","children":null,"spread":false},{"title":".classpath <span style='color:#111;'> 279B </span>","children":null,"spread":false}],"spread":true},{"title":"wine.data <span style='color:#111;'> 10.53KB </span>","children":null,"spread":false},{"title":"WineRegularizedLogisticRegression.jar <span style='color:#111;'> 26.98KB </span>","children":null,"spread":false},{"title":"WineNaiveBayesianClassification.jar <span style='color:#111;'> 26.96KB </span>","children":null,"spread":false},{"title":"课题研究报告模版.docx <span style='color:#111;'> 250.66KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明