这种用于识别手写数字的基于CNN的模型在训练12个时期之后获得99.2%的验证准确度。 它在Kaggle的MNIST数据集上训练
2021-11-04 21:13:47 26.67MB Python开发-机器学习
1
LeNet5神经网络模型在手写数字识别中的识别率很高,通过训练得到0.985精度的参数,可以用于训练更高精度的初始参数。其中卷积核选择表(O:true, X: false): { O, X, X, X, O, O, O, X, X, O, O, O, O, X, O, O, O, O, X, X, X, O, O, O, X, X, O, O, O, O, X, O, O, O, O, X, X, X, O, O, O, X, X, O, X, O, O, O, X, O, O, O, X, X, O, O, O, O, X, X, O, X, O, O, X, X, O, O, O, X, X, O, O, O, O, X, O, O, X, O, X, X, X, O, O, O, X, X, O, O, O, O, X, O, O, O };
2021-11-04 19:21:25 406KB LeNe5 卷积神经网络
1
CNNIQA 以下论文的PyTorch 1.3实施: 笔记 在这里,选择优化器作为Adam,而不是本文中带有势头的SGD。 data /中的mat文件是从数据集中提取的信息以及有关火车/ val /测试段的索引信息。 LIVE的主观评分来自。 训练 CUDA_VISIBLE_DEVICES=0 python main.py --exp_id=0 --database=LIVE 训练前, im_dir在config.yaml被指定必须的。 可以在config.yaml设置数据库内实验中的Train / Val / Test拆分比率(默认值为0.6 / 0.2 / 0.2)。 评估 测试演示 python test_demo.py --im_path=data/I03_01_1.bmp 交叉数据集 python test_cross_dataset.py --help TODO:
1
【手写数字识别】基于卷积神经网络CNN实现手写数字识别分类matlab源码
2021-11-04 15:51:00 17KB
1
本资源为深度学习交通流量预测的实战项目,其中包含了用LSTM,GRU以及CNN来进行流量预测的相关源码,整个项目的过程集数据预处理、模型训练与测评,性能展示于一体,代码结构良好,易于阅读,且在CSDN有本人相应的博客说明。
为实现对乳腺癌组织病理图像的准确自动分级,提出了一种改进的卷积神经网络,依次引入两种不同的卷积结构,以提高网络对病理图像的识别准确率。以深度残差网络(ResNeXt)为基础网络,用八度卷积(OctConv)替代传统卷积层,在特征提取阶段降低特征图中的冗余特征,提高了细节特征的提取效果;用异构卷积(HetConv)代替网络中的部分传统卷积层,以降低模型的训练参数。为了克服因数据样本较少出现的过拟合问题,采用一种基于图像分块思想的数据增强方法。实验结果表明,该网络在图像级别的四分类任务中准确率达到91.25%,表明所设计的网络模型具有较高的识别率和较好的实时性。
2021-11-04 11:07:30 7.64MB 图像处理 组织病理 卷积神经 残差网络
1
卷积神经网络代码Matlab 人工神经网络 使用空间光谱深度残差卷积神经网络(HSID-CNN)的用于高光谱图像降噪的Matlab演示代码,IEEE TGRS,2019。 By Qiang Zhang (whuqzhang@gmail.com) Wuhan University, China. 如果您在工作中使用/适应我们的代码(作为独立工具或任何算法的组成部分),请引用我们的论文。 Q. Yuan,Q. Zhang,J。Li,H。Shen和L. Zhang ,“使用空间光谱深度残差卷积神经网络进行高光谱图像降噪”, IEEE地理科学与遥感学报,第1卷。 57号2,第1205-1218页,2019年。 @ARTICLE{yuan2019, author={Q. {Yuan} and Q. {Zhang} and J. {Li} and H. {Shen} and L. {Zhang}}, journal={IEEE Trans. Geosci. Remote Sens.}, title={Hyperspectral Image Denoising Employing a Spatial
2021-11-04 10:35:55 11.3MB 系统开源
1
这个PPT是最近做的一次卷积神经网络和目标检测识别的调研报告,包括读的几篇顶级会议期刊的论文,分为以下内容: (1)卷积神经网络的基本概念和发展脉络; (2)卷积神经网络的优化改进; (3)目标检测相关数据库和研究进展。 PPT做的优点粗糙,见谅。。。整个PPT最后的参考文献是最重要的。
2021-11-04 09:58:45 2.23MB 卷积网络网络
1
VGG16权重文件vgg16_weights_tf_dim_ordering_tf_kernels.h5的百度网盘下载链接,文件较大从GitHub国内下载速度很慢要两个小时,提供网盘资源需要请下载。
2021-11-04 09:02:34 71B 深度学习 VGG 卷积神经网络 CNN
1
卷积神经网络的开发,用于音乐音频文件的多标签自动标记 初步步骤 下载mp3文件,然后使用以下方法将其组合:cat mp3.zip。*> single_mp3.zip从以下子文件夹中提取文件:find。 -mindepth 2型f -print -exec mv {}。 ; 介绍 通常,音乐音频文件可以随附与其内容有关的元数据,例如自由文本描述或标签。 事实证明,标签更有用,因为它们可以提供对音频文件的更直接描述,并且可以用于与音乐相关的推荐系统中的任务,如按性别分类,艺术家,乐器等。 由于并非所有音频文件都带有标签,因此需要自动标记。 广泛使用的一种方法涉及使用无监督特征学习,例如K均值,稀疏编码和Boltzmann机器。 在这些情况下,主要关注的是捕获低水平音乐结构,这些结构可用作某些分类器的输入。 另一种方法涉及受监督的方法,例如各种体系结构类型(MLP,CNN,RNN)的深层神经
1