上传者: 38531630
|
上传时间: 2021-11-04 11:07:30
|
文件大小: 7.64MB
|
文件类型: -
为实现对乳腺癌组织病理图像的准确自动分级,提出了一种改进的卷积神经网络,依次引入两种不同的卷积结构,以提高网络对病理图像的识别准确率。以深度残差网络(ResNeXt)为基础网络,用八度卷积(OctConv)替代传统卷积层,在特征提取阶段降低特征图中的冗余特征,提高了细节特征的提取效果;用异构卷积(HetConv)代替网络中的部分传统卷积层,以降低模型的训练参数。为了克服因数据样本较少出现的过拟合问题,采用一种基于图像分块思想的数据增强方法。实验结果表明,该网络在图像级别的四分类任务中准确率达到91.25%,表明所设计的网络模型具有较高的识别率和较好的实时性。