卷积神经网络的开发,用于音乐音频文件的多标签自动标记 初步步骤 下载mp3文件,然后使用以下方法将其组合:cat mp3.zip。*> single_mp3.zip从以下子文件夹中提取文件:find。 -mindepth 2型f -print -exec mv {}。 ; 介绍 通常,音乐音频文件可以随附与其内容有关的元数据,例如自由文本描述或标签。 事实证明,标签更有用,因为它们可以提供对音频文件的更直接描述,并且可以用于与音乐相关的推荐系统中的任务,如按性别分类,艺术家,乐器等。 由于并非所有音频文件都带有标签,因此需要自动标记。 广泛使用的一种方法涉及使用无监督特征学习,例如K均值,稀疏编码和Boltzmann机器。 在这些情况下,主要关注的是捕获低水平音乐结构,这些结构可用作某些分类器的输入。 另一种方法涉及受监督的方法,例如各种体系结构类型(MLP,CNN,RNN)的深层神经
1