age-gender-estimation, 用于年龄和性别估计的CNN网络的Keras实现 年龄和性别估计这是CNN的一个Keras实现,用于估计来自一个人脸图像 [1, 2 ]的年龄和性别。 在培训中,使用数据集 。[ jul 。5,2018 ],UTKFace数据集可以用于训练。添加了AppA真实数据集的[ apr 。
2022-06-07 00:01:52 864KB 开源
1
支持向量机_with_python 在本笔记本中,我们介绍了支持向量机(SVM)算法,这是一种功能强大但简单的监督学习方法,用于预测数据。 对于分类任务,SVM算法尝试将特征空间中的数据划分为不同的类别。 默认情况下,这种划分是通过构造最佳分割数据的超平面来执行的。 为了进行回归,构造了超平面以映射数据分布。 在这两种情况下,这些超平面均以非概率方式映射线性结构。 但是,通过采用内核技巧,我们可以将非线性数据集转换为线性数据集,从而使SVM可以应用于非线性问题。 SVM是功能强大的算法,已得到广泛普及。 这部分是由于它们在高维特征空间中有效,包括那些特征数与实例数相似或略微超过实例数的问题。 与具有大量数据集的内存需求很高的KNN不同,SVM可以提高内存效率,因为仅需要支持向量即可计算超平面。 最后,通过使用不同的内核,SVM可以应用于各种学习任务。 另一方面,这些模型是黑匣子,很难解释
2022-06-06 21:07:08 84KB JupyterNotebook
1
SVM(support vector machine)支持向量机: 注意:本文不准备提到数学证明的过程,一是因为有一篇非常好的文章解释的非常好:支持向量机通俗导论(理解SVM的三层境界) ,另一方面是因为我只是个程序员,不是搞数学的(主要是因为数学不好。),主要目的是将SVM以最通俗易懂,简单粗暴的方式解释清楚。 线性分类: 先从线性可分的数据讲起,如果需要分类的数据都是线性可分的,那么只需要一根直线f(x)=wx+b就可以分开了,类似这样: 这种方法被称为:线性分类器,一个线性分类器的学习目标便是要在n维的数据空间中找到一个超平面(hyper plane)。也就是说,数据不总是二维的,比如
2022-06-06 18:23:49 231KB python python算法 svm
1
Tensorflow是目前最流行的深度学习框架,我们可以用它来搭建自己的卷积神经网络并训练自己的分类器,本文介绍怎样使用Tensorflow构建自己的CNN,怎样训练用于简单的验证码识别的分类器。本文假设你已经安装好了Tensorflow,了解过CNN的一些知识。 下面将分步介绍怎样获得训练数据,怎样使用tensorflow构建卷积神经网络,怎样训练,以及怎样测试训练出来的分类器 1. 准备训练样本 使用Python的库captcha来生成我们需要的训练样本,代码如下: import sys import os import shutil import random import time
2022-06-06 15:48:48 384KB char fl flow
1
基于tensorflow搭建Faster R-CNN实现目标检测任务 有代码 有数据 可直接运行。 Faster R-CNN 实现目标检测 tensorflow 基于tensorflow搭建Faster R-CNN实现目标检测任务 有代码 有数据 可直接运行。 Faster R-CNN 实现目标检测 tensorflow
2022-06-06 14:12:38 502.91MB tensorflow cnn 目标检测 FasterR-CNN
为了使用支持向量机(SVM)算法进行多类分类,在SVM二分类基础上,提出使用排序算法中冒泡排序的思想进行SVM多类别数据分类。使用该方法在选取的UCI数据集进行实验,结果表明,在保证较高正确率的情况下,相对传统一对一的多分类方法,该方法较大幅地减少了分类时间,是一种应用性较强的SVM多类分类方法。
2022-06-06 01:05:22 365KB 支持向量机
1
一般信息 支持向量机(SVM)和相关的基于内核的学习算法是一类知名的机器学习算法,用于非参数分类和回归。 liquidSVM是SVM的实现,其主要功能是: 完全集成的超参数选择, 无论大小数据集,其速度都极高, , , , 和绑定, 为专家提供充分的灵活性,以及 包括各种不同的学习场景: 多类别分类,ROC和Neyman-Pearson学习, 最小二乘,分位数和预期回归。 如有疑问和意见,请通过与我们联系。 您也可以在此处要求注册到我们的邮件列表。 liquidSVM已根据许可。 如果您需要其他许可证,请与联系。 命令行界面 命令行版本的。 Linux / OS X的终
2022-06-05 16:05:49 5.28MB python c-plus-plus machine-learning r
1
该项目的详细文章可以在找到 目录 基本信息 在该项目中,我们已经开发了神经网络以使用卷积神经网络对细胞是否被感染进行分类。 我们使用了Kaggle提供的数据集,其中包含27558张受感染和未感染细胞的图像。 先决条件 要使用它,您需要满足以下条件: 1. Python3 2. Pip 正在安装 在计算机上获得必备条件后,执行以下命令: $ pip install -r requirements.txt 这将为您安装所有必需的库。 依存关系 使用以下项目创建项目: Keras: pip install keras pip install numpy : pip install numpy Matplotlib: pip install matplotlib Seaborn: pip install seaborn Scikit了解: pip install sklearn O
2022-06-05 14:10:22 340.45MB JupyterNotebook
1
在基于Fisher投影的边界向量集上训练SVM
2022-06-05 11:04:36 565KB 研究论文
1
给出完整Python代码,用于图像识别,可用于深度学习的入门。
2022-06-04 23:32:11 7.83MB 图像识别
1