一个Python软件包,用于使用 Tensor功能在CPU或GPU上模拟尖峰神经网络(SNN)。 BindsNET是一个尖刺的神经网络仿真库,旨在开发用于机器学习的受生物启发的算法。 该软件包被用作正在进行的研究的一部分,该研究在中将SNN应用于机器学习(ML)和强化学习(RL)问题。 查看,以获取实验集合,结果分析功能,实验结果图等。 该软件包的文档可以在找到。 要求 Python 3.6 requirements.txt 设置东西 使用点子 BindsNET可通过其git存储库获得。 问题 pip install git+https://github.com/BindsNET/bi
1
很棒的强化学习 专门用于强化学习的精选资源列表。 我们还有其他主题的页面: ,, 维护者:, , 我们正在寻找更多的贡献者和维护者! 贡献 请随时 目录 代号 理查德·萨顿(Richard Sutton)和安德鲁·巴托(Andrew Barto)的《强化学习:入门》中的示例和练习代码 强化学习控制问题的仿真代码 (用于RL的标准接口)和 -基于Python的强化学习,人工智能和神经网络 -用于教育和研究的基于价值函数的强化学习框架 用于python强化学习中问题的机器学习框架 基于Java的强化学习框架 实施Q学习和其他RL算法的平台 贝叶斯强化学习库和工具包 进行深度Q学习-使用Google Tensorflow进行深度Q学习演示 -Torch中的深层Q网络和异步代理 使用Theano + Lasagne进行深度强化学习和自定义递归网络的python库。 -最小和干净的强化学
2022-04-27 09:29:32 10KB 系统开源
1
Tensorflow 2 Keras的深度强化学习 注意:需要tensorflow == 2.1.0 它是什么? keras-rl2在Python中实现了一些最先进的深度强化学习算法,并与深度学习库无缝集成。 此外, keras-rl2可以与一起使用。 这意味着评估和使用不同算法很容易。 当然,您可以根据自己的需要扩展keras-rl2 。 您可以使用内置的Keras回调和指标或定义自己的指标。 更重要的是,只需扩展一些简单的抽象类,即可轻松实现自己的环境甚至算法。 文档可。 包含什么? 截止到今天,已经实现了以下算法: 深度Q学习(DQN) [1] , [2] Double DQN [3] 深度确定性策略梯度(DDPG) [4] 连续DQN(CDQN或NAF) [6] 交叉熵方法(CEM) [7] , [8] 决斗网络DQN(Dueling DQN) [9] 深层S
2022-04-23 11:05:32 898KB algorithms deep-reinforcement-learning deep dqn
1
Reinforcement Learning A Survey This paper surveys the eld of reinforcement learning from a computer-science perspective. It is written to be accessible to researchers familiar with machine learning. Both the historical basis of the eld and a broad selection of current work are summarized. Reinforcement learning is the problem faced by an agent that learns behavior through trial-and-error interactions with a dynamic environment. The work described here has a resemblance to work in psychology,
2022-04-17 12:05:54 444KB 强化学习
健身房 基于OpenAI Gym的多代理环境的集合。 安装 使用PyPI: pip install ma-gym 直接从来源: git clone https://github.com/koulanurag/ma-gym.git cd ma-gym pip install -e . 参考: 如果您想引用它,请使用此bibtex: @misc{magym, author = {Koul, Anurag}, title = {ma-gym: Collection of multi-agent environments based on OpenAI gym.}, year = {2019}, publisher = {GitHub}, journal = {GitHub repository}, howpublish
1
Algorithm-Deep-reinforcement-learning-with-pytorch.zip,Pythorch实现DQN、AC、Acer、A2C、A3C、PG、DDPG、TRPO、PPO、SAC、TD3和….,算法是为计算机程序高效、彻底地完成任务而创建的一组详细的准则。
2022-04-12 09:25:33 69.17MB Algorithm
1
Reinforcement Learning: An Introduction Richard S. Sutton and Andrew G. Barto Second Edition, in progress MIT Press, Cambridge, MA, 2017
2022-04-07 21:00:55 10.67MB 强化学习
1
RL图 用于深度强化学习的模块化计算图。 RLgraph是一个在研究和实践中快速原型化,定义和执行强化学习算法的框架。 RLgraph与大多数其他库不同,因为它可以支持TensorFlow(或通常的静态图),也可以通过单个组件接口支持急切/按运行定义执行(PyTorch)。 您还可以在此处找到介绍性博文: 。 RLgraph公开了使用代理的良好定义的API,并提供了用于测试和组装机器学习模型的新颖组件概念。 通过分离图定义,编译和执行,无需修改代理定义即可访问多个分布式后端和设备执行策略。 这意味着它特别适合从应用用例原型到大规模分布式培训的平稳过渡。 版本0.4.0中RLgraph的
1
MuJoCo的RL 该软件包包含用于用模拟的连续控制任务的各种RL算法的实现 安装 主要的软件包依赖项是MuJoCo , python=3.7 , gym>=0.13 , mujoco-py>=2.0和pytorch>=1.0 。 有关详细的安装说明,请参阅setup/README.md ()。 参考书目 如果您觉得该包装有用,请引用以下文件。 @INPROCEEDINGS{Rajeswaran-NIPS-17, AUTHOR = {Aravind Rajeswaran and Kendall Lowrey and Emanuel Todorov and Sham Kakade}, TITLE = "{Towards Generalization and Simplicity in Continuous Control}", BOOKTITLE =
1
d4rl-小球 使用Pybullet环境进行数据驱动的深度强化学习的数据集。 这项工作旨在通过开源项目符号模拟器为数据驱动的深度强化学习提供数据集,从而鼓励更多的人加入该社区。 该存储库建立在。 但是,当前,如果不检查MuJoCo激活密钥就无法导入d4rl,这会使程序失败。 因此, d4rl_pybullet.offline_env是直接从复制的。 安装 $ pip install git+https://github.com/takuseno/d4rl-pybullet 用法 该API与原始d4rl基本相同。 import gym import d4rl_pybullet # dataset will be automatically downloaded into ~/.d4rl/datasets env = gym . make ( 'hopper-bullet-mixed-v0
1