本文研究了异步离散时间多智能体系统的约束共识问题,其中每个智能体在达成共识时都需要位于封闭的凸约束集内。 假定通信图是有向的,不平衡的,动态变化的。 另外,假定它们的并集图在有限长度的某些间隔之间是牢固连接的。 为了处理代理之间的异步通信,可以通过添加新的代理将原始异步系统等效地转换为同步系统。 通过利用凸集上的投影特性,可以估算从新构建的系统中的智能体状态到所有智能体约束集的交集的距离。 基于此估计,通过显示新构建系统的线性部分收敛并且非线性部分随时间消失,证明了原始系统已达成共识。 最后,提供了两个数值示例来说明理论结果的有效性。
2025-10-24 09:47:53 846KB Constrained consensus; Multi-agent system;
1
本书深入探讨了多智能体系统在通信网络上的协同控制问题,重点介绍了最优和自适应设计方法。书中阐述了如何通过分布式协议确保所有智能体达成共识或同步,涵盖了一阶和二阶系统、队形控制及图拓ology的影响。此外,书中还探讨了最优控制和自适应控制在图上的实现,强调了局部和全局最优性之间的关系及其在实际应用中的挑战。通过实例和理论分析,本书为读者提供了理解和解决多智能体系统协同控制问题的全面指南。 多智能体系统的协同控制与优化设计是近年来系统控制领域的热点问题。智能体系统是由多个智能体组成的一个群体,每个智能体拥有一定程度的自治能力,通过相互之间的协调与合作来完成复杂的任务。在这一领域中,协同控制主要是指智能体之间如何通过分布式协议达成一致的行为,即达成共识或同步。优化设计则涉及如何构建最优的控制策略,使得系统的整体性能达到最佳。 本书深入探讨了多智能体系统在通信网络上的协同控制问题,重点介绍了最优和自适应设计方法。所谓最优设计,即是在给定性能指标下,寻找可以使系统性能最优化的控制策略。而自适应设计则是指系统能够在变化的环境或参数下,自动调整自身控制策略,以适应外部变化。 书中详细阐述了分布式协议如何确保所有智能体达成共识或同步,并且覆盖了不同类型的系统模型,例如一阶系统和二阶系统。队形控制和图拓扑的影响也是讨论的关键内容,因为它们直接关系到智能体如何在空间中有效地组织和协同工作。 此外,最优控制和自适应控制在图上的实现也被细致探讨。这涉及到如何将最优控制和自适应控制理论应用到多智能体系统的网络结构上,以及这些控制策略如何在局部和全局水平上影响系统的最优性。这些理论与实际应用中的挑战紧密相连,书中通过实例和理论分析,为读者提供了理解和解决多智能体系统协同控制问题的全面指南。 本书的作者们包括弗兰克·L·刘易斯(Frank L. Lewis)、张红伟(Hongwei Zhang)、克里斯蒂安·亨格斯特-莫夫里克(Kristian Hengster-Movric)和阿比吉特·达斯(Abhijit Das)。他们分别来自德克萨斯大学阿灵顿分校UTA研究所和西南交通大学电气工程学院、以及Danfoss Power Solutions(US)公司。该书由Springer出版,是通讯与控制工程系列的一部分。 在版权方面,本书受到国际版权法律的保护。出版社保留了包括翻译权、翻印权、插图使用、朗诵权、广播权、微缩复制或任何其他物理方式复制、传输或信息存储和检索、电子改编、计算机软件,或通过现在已知或今后开发出的类似或不相似方法的权利。但是,为了评论、学术分析或专门为在计算机系统中执行和使用的材料,可以简短摘录。 本书对于希望深入了解多智能体系统协同控制和优化设计的读者来说,是极具价值的参考资料。它不仅涵盖了理论的全面讨论,也提供了实际应用的案例分析,能够帮助读者在工程实践与理论研究中找到平衡点。
2025-10-22 12:20:33 21.49MB multi-agent systems control theory
1
内容概要:本书《Agentic Design Patterns》系统介绍了构建智能AI代理系统的核心设计模式,涵盖提示链、路由、并行化、反思、工具使用、规划、多代理协作、记忆管理、异常处理、人机协同、知识检索(RAG)、代理间通信等关键技术。通过结合Google ADK等实际代码示例,深入讲解了如何构建具备自主决策、动态适应与容错能力的智能体系统,并强调了在金融、医疗等高风险领域中责任、透明度与可信度的重要性。书中还探讨了大模型作为推理引擎的内在机制及其在代理系统中的核心作用。; 适合人群:具备一定AI和编程基础的研发人员、系统架构师、技术负责人,尤其是从事智能系统、自动化流程或AI产品开发的1-3年经验从业者;对AI代理、多智能体系统感兴趣的进阶学习者也适用。; 使用场景及目标:① 掌握如何设计高效、可靠、可扩展的AI代理系统;② 学习在复杂任务中应用并行执行、错误恢复、人机协同等关键模式;③ 理解大语言模型作为“思维引擎”的工作原理及其在智能体中的角色;④ 构建适用于金融、客服、自动化运维等现实场景的鲁棒AI系统。; 阅读建议:本书以实践为导向,建议读者结合代码示例动手实操,尤其关注ADK框架下的代理构建方式。学习过程中应注重理解设计模式背后的原则而非仅复制代码,并思考如何将这些模式应用于自身业务场景中,同时重视系统安全性、伦理规范与工程稳健性。
2025-10-08 16:23:44 18.02MB Multi-Agent System Design
1
分享一种强化学习的建模过程,它是将通信当中的资源分配问题建立成强化学习方法,资源分配是指通信网络中,频谱资源、信道、带宽、天线功率等等是有限的,怎么管理这些资源来保证能够通信的同时优化整个网络吞吐量、功耗,这个就是网络资源分配。这里多智能体就是涉及博弈论的思想。
2024-06-26 09:50:15 935KB 强化学习 多智能体 无人机 资源分配
1
基于Multi-Agent的电子信息装备体系作战效能评估方法 本文主要介绍了一种基于Multi-Agent方法的电子信息装备体系作战效能评估方法。该方法通过将多Agent方法应用于电子信息装备体系的评估中,旨在提高电子信息装备体系的作战效能评估的准确性和效率。 首先,本文阐述了电子信息装备体系及体系效能评估的概念,并分析了装备体系评估的主要方法和技术。然后,通过对比分析现有的装备体系效能评估方法的优缺点和适用范围,将多Agent方法引入到电子信息装备体系评估中。 多Agent方法是一种基于分布式人工智能技术的评估方法,它可以模拟电子信息装备体系的复杂行为和交互过程,从而评估电子信息装备体系的作战效能。此方法的优点在于它可以模拟电子信息装备体系的多种作战场景,评估电子信息装备体系的作战效能,同时也可以评估电子信息装备体系的子系统的效能。 在本文中,还介绍了多Agent方法的概念、优缺点和基本结构,并构建了电子信息对抗系统的作战效能度量指标,设计了电子信息对抗系统的作战效能仿真框架,并基于AnyLogic平台进行了仿真验证。 此外,本文还讨论了基于Agent的评估方法在电子信息对抗系统和电子信息装备体系的应用前景。结果表明,基于Agent的评估方法既适用于电子信息对抗系统的作战效能评估,也适用于电子信息装备体系及其子系统的效能评估。 本文提出的基于Multi-Agent方法的电子信息装备体系作战效能评估方法可以提高电子信息装备体系的作战效能评估的准确性和效率,为电子信息装备体系的发展和应用提供了新的思路和方法。 知识点: 1. 电子信息装备体系的概念和分类 2. 装备体系评估的主要方法和技术 3. 多Agent方法的概念、优缺点和基本结构 4. 基于Multi-Agent方法的电子信息装备体系作战效能评估方法 5. 电子信息对抗系统的作战效能度量指标和仿真框架 6. AnyLogic平台在仿真验证中的应用 7. 基于Agent的评估方法在电子信息对抗系统和电子信息装备体系的应用前景
马普里 这是一个多代理项目(commnet ) pytorch用于多代理粒子环境“ simple_spread”( ) 推理: 通讯网: Bicnet: Maddpg: 训练曲线: 如何使用 点安装-r requirements.txt cd MAProj /算法 python ma_main.py --algo maddpg --mode火车 待办事项清单 受过更多地图训练 修复图形内存泄漏 博客链接 https://zhuanlan.zhihu.com/p/143776727
1
Distributed Consensus in Multi-vehicle Cooperative
2023-01-13 11:33:44 10.72MB Distributed Consensus multi-agent
1
A_Dynamic_Network_Simulation_Model_Based_on_Multi-Agent_Systems,希望对大家有用
2022-12-14 15:51:50 3.81MB Transportation
1
Cooperative Control of Multi-Agent Systems 书籍 Frank L. Lewis 多智能体必备书籍 大名鼎鼎的Frank L. Lewis
2022-11-10 20:24:16 12.51MB 多智能体
1
线性多智能体系统的分布式包含控制,温广辉, 胡国强,本文研究了有向通信拓扑下的线性多智能体系统的分布式包含控制问题。为了实现包含控制任务,本文首先设计了一类静态分布式通信协��
2022-10-30 14:26:15 203KB Distributed control containment control
1