这里是 ShowMeAI 持续分享的【开源eBook】系列!内容覆盖机器学习、深度学习、数据科学、数据分析、大数据、Keras、TensorFlow、PyTorch、强化学习、数学基础等各个方向。整理自各平台的原作者公开分享(审核大大请放手) ◉ 简介:从2016年春季学期开始,作者 Jeff Heaton 开始为圣路易斯华盛顿大学教授 T81-558 深度学习的应用课程,并将课程材料、例子和作业放在 GitHub 上,逐渐丰富演变成了这本书。 ◉ 目录: 第1章:Python 预备课程 第2章:用于机器学习的 Python 第3章:TensorFlow 简介 第4章:表格数据训练 第5章:正则化和Dropout 第6章:用于计算机视觉的卷积神经网络 第7章:生成对抗网络 第8章:Kaggle 数据集 第9章:迁移学习 第10章:Keras 中的时间序列 第11章:Hugging Face的自然语言处理 第12章:强化学习 第13章:高级/其他主题 第14章:其他神经网络技术
2022-12-31 14:26:56 5.21MB 人工智能 深度学习 Python tensorflow
1
这里是 ShowMeAI 持续分享的【开源eBook】系列!内容覆盖机器学习、深度学习、数据科学、数据分析、大数据、Keras、TensorFlow、PyTorch、强化学习、数学基础等各个方向。整理自各平台的原作者公开分享(审核大大请放手) ◉ 简介:从2016年春季学期开始,作者 Jeff Heaton 开始为圣路易斯华盛顿大学教授 T81-558 深度学习的应用课程,并将课程材料、例子和作业放在 GitHub 上,逐渐丰富演变成了这本书。 ◉ 目录: 第1章:Python 预备课程 第2章:用于机器学习的 Python 第3章:TensorFlow 简介 第4章:表格数据训练 第5章:正则化和Dropout 第6章:用于计算机视觉的卷积神经网络 第7章:生成对抗网络 第8章:Kaggle 数据集 第9章:迁移学习 第10章:Keras 中的时间序列 第11章:Hugging Face的自然语言处理 第12章:强化学习 第13章:高级/其他主题 第14章:其他神经网络技术
2022-12-31 14:26:54 5.09MB 人工智能 深度学习 python tensorflow
1
PointNet2用于3D点云的语义分割 马蒂厄·奥罕(Mathieu Orhan)和纪尧姆·迪基瑟(Guillaume Dekeyser)着(巴黎桥和歌剧院,2018年,巴黎)。 介绍 这个项目是PointNet2的学生分支,由斯坦福大学的Charles R. Qi,Li(Eric)Yi,Hao Su,Leonidas J. Guibas提供。 有关详细信息,您可以参考原始的PointNet2论文和代码( )。 该分支专注于语义分割,目的是比较三个数据集:Scannet,Semantic-8和Bertrand Le Sa​​ux空中LIDAR数据集。 为此,我们清理,记录,重构和改进原始项目。 稍后,我们将把相同的数据集与另一个最新的语义分割项目SnapNet进行比较。 相关性和数据 我们使用3 GTX Titan Black和GTX Titan X在Ubuntu 16.04上工作。
1
Keras CNN分类器 该存储库提供代码以根据Tensorflow 2.0中Keras API提供的预训练卷积神经网络(CNN)设置和训练自己的图像分类器。 您可以利用转移学习对自己收集的数据集进行训练,或者从头开始训练网络以比较大型数据集的性能。 如何使用 这个仓库的主要代码包含在ClassifierCNN类Classifier.py 。 您真正需要做的就是导入该类,设置一个适当的实例来指定所需的数据集和模型,一切顺利。 下面提供了一些示例: # Import pre-trained Keras CNN Model from keras.applications.densenet import DenseNet169 # Import ClassifierCNN class from Classifier import ClassifierCNN # Instantiate clas
1
Mining Heterogeneous Information Networks: Principles and Methodologies. Synthesis Lectures on Data Mining and Knowledge Discovery
2022-12-19 16:57:28 2.36MB 数据挖掘
1
傅立叶特征使网络可以在低维域中学习高频功能 | * 1 , * 1,2 , * 1 , 1 , 1 , 1 , 3 , 2 , 1 1加州大学伯克利分校, 2 Google研究中心, 3加州大学圣地亚哥分校*表示相等的贡献 抽象的 我们表明,通过简单的傅立叶特征映射传递输入点使多层感知器(MLP)能够学习低维问题域中的高频函数。这些结果揭示了计算机视觉和图形学的最新进展,这些进展通过使用MLP表示复杂的3D对象和场景来实现了最新的结果。使用来自神经正切核(NTK)文献的工具,我们表明标准MLP在理论和实践上均无法学习高频。为了克服这种频谱偏差,我们使用傅立叶特征映射将有效的NTK转换为具有可调带宽的固定核。我们建议一种选择特定于问题的傅立叶特征的方法,该方法可以大大提高MLP在与计算机视觉和图形社区相关的低维回归任务上的性能。 代码 我们提供了一个作为该核心思想的简单
2022-12-12 00:42:43 6.39MB JupyterNotebook
1
经典的leach-mac协议文献。作者:Wendi Rabiner Heinzelman, Anantha Chandrakasan, and Hari Balakrishnan。写于2002年
2022-12-11 21:20:06 309KB leach mac协议
1
Axiomatic Attribution for Deep Networks 论文解析
2022-12-10 23:28:02 12KB
1
StyleGAN —官方TensorFlow实施的编码器 的StyleGAN2 这是我的StyleGAN编码器; 有很多类似的东西,但这是我的。 感谢@Puzer作为原始人,其中包括叉子;感谢@SimJeg作为构成此处所用ResNet模型基础的初始代码;感谢@Pender他的叉子! 从左到右:原始图像,在生成的StyleGAN面Kong上经过训练的ResNet的预测图像以及最终的编码图像。 我添加了什么: ResNet编码器-使用train_resnet.py自己训练或! 将模型放在data / finetuned_resnet.h5中 可以直接替换以使用带有train_effnet.
1
半监督分层递归图神经网络用于城市范围内的停车位可用性预测 这是SHARE体系结构的Pytorch实现,如论文《。 如果您在研究中利用SHARE模型,请引用以下内容: @article{zhang2019semi, title={Semi-Supervised Hierarchical Recurrent Graph Neural Network for City-Wide Parking Availability Prediction}, author={Zhang, Weijia and Liu, Hao and Liu, Yanchi and Zhou, Jingbo and Xiong, Hui}, booktitle={Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligen
1