stylegan-encoder:StyleGAN编码器-将真实图像转换为潜在空间

上传者: 42127835 | 上传时间: 2022-12-09 00:09:07 | 文件大小: 10.89MB | 文件类型: ZIP
StyleGAN —官方TensorFlow实施的编码器 的StyleGAN2 这是我的StyleGAN编码器; 有很多类似的东西,但这是我的。 感谢@Puzer作为原始人,其中包括叉子;感谢@SimJeg作为构成此处所用ResNet模型基础的初始代码;感谢@Pender他的叉子! 从左到右:原始图像,在生成的StyleGAN面Kong上经过训练的ResNet的预测图像以及最终的编码图像。 我添加了什么: ResNet编码器-使用train_resnet.py自己训练或! 将模型放在data / finetuned_resnet.h5中 可以直接替换以使用带有train_effnet.

文件下载

资源详情

[{"title":"( 63 个子文件 10.89MB ) stylegan-encoder:StyleGAN编码器-将真实图像转换为潜在空间","children":[{"title":"stylegan-encoder-master","children":[{"title":"generate_figures.py <span style='color:#111;'> 9.34KB </span>","children":null,"spread":false},{"title":"encoder","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"generator_model.py <span style='color:#111;'> 6.94KB </span>","children":null,"spread":false},{"title":"perceptual_model.py <span style='color:#111;'> 15.22KB </span>","children":null,"spread":false}],"spread":true},{"title":"dataset_tool.py <span style='color:#111;'> 41.12KB </span>","children":null,"spread":false},{"title":"teaser.png <span style='color:#111;'> 788.80KB </span>","children":null,"spread":false},{"title":"align_images.py <span style='color:#111;'> 3.04KB </span>","children":null,"spread":false},{"title":"requirements.txt <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"swa.py <span style='color:#111;'> 1.98KB </span>","children":null,"spread":false},{"title":"pretrained_example.py <span style='color:#111;'> 6.27KB </span>","children":null,"spread":false},{"title":"Learn_direction_in_latent_space.ipynb <span style='color:#111;'> 7.64MB </span>","children":null,"spread":false},{"title":"LICENSE.txt <span style='color:#111;'> 18.95KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 38.61KB </span>","children":null,"spread":false},{"title":"config.py <span style='color:#111;'> 784B </span>","children":null,"spread":false},{"title":"dnnlib","children":[{"title":"__init__.py <span style='color:#111;'> 799B </span>","children":null,"spread":false},{"title":"util.py <span style='color:#111;'> 13.51KB </span>","children":null,"spread":false},{"title":"submission","children":[{"title":"__init__.py <span style='color:#111;'> 392B </span>","children":null,"spread":false},{"title":"_internal","children":[{"title":"run.py <span style='color:#111;'> 1.51KB </span>","children":null,"spread":false}],"spread":false},{"title":"submit.py <span style='color:#111;'> 10.92KB </span>","children":null,"spread":false},{"title":"run_context.py <span style='color:#111;'> 4.25KB </span>","children":null,"spread":false}],"spread":false},{"title":"tflib","children":[{"title":"__init__.py <span style='color:#111;'> 524B </span>","children":null,"spread":false},{"title":"network.py <span style='color:#111;'> 31.56KB </span>","children":null,"spread":false},{"title":"tfutil.py <span style='color:#111;'> 9.11KB </span>","children":null,"spread":false},{"title":"autosummary.py <span style='color:#111;'> 7.36KB </span>","children":null,"spread":false},{"title":"optimizer.py <span style='color:#111;'> 9.75KB </span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":"encode_images.py <span style='color:#111;'> 14.92KB </span>","children":null,"spread":false},{"title":"StyleGAN_Encoder_Tutorial.ipynb <span style='color:#111;'> 2.84MB </span>","children":null,"spread":false},{"title":"robust_loss","children":[{"title":"requirements.txt <span style='color:#111;'> 109B </span>","children":null,"spread":false},{"title":"data","children":[{"title":"partition_spline.npz <span style='color:#111;'> 192.57KB </span>","children":null,"spread":false}],"spread":false},{"title":"wavelet.py <span style='color:#111;'> 19.43KB </span>","children":null,"spread":false},{"title":"general.py <span style='color:#111;'> 5.73KB </span>","children":null,"spread":false},{"title":"distribution.py <span style='color:#111;'> 12.88KB </span>","children":null,"spread":false},{"title":"cubic_spline.py <span style='color:#111;'> 3.97KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.12KB </span>","children":null,"spread":false},{"title":"run.sh <span style='color:#111;'> 1.03KB </span>","children":null,"spread":false},{"title":"util.py <span style='color:#111;'> 5.55KB </span>","children":null,"spread":false}],"spread":false},{"title":"Play_with_latent_directions.ipynb <span style='color:#111;'> 2.60MB </span>","children":null,"spread":false},{"title":"train_resnet.py <span style='color:#111;'> 13.12KB </span>","children":null,"spread":false},{"title":"ffhq_dataset","children":[{"title":"landmarks_detector.py <span style='color:#111;'> 781B </span>","children":null,"spread":false},{"title":"face_alignment.py <span style='color:#111;'> 4.43KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"latent_representations","children":[{"title":"donald_trump_01.npy <span style='color:#111;'> 36.13KB </span>","children":null,"spread":false},{"title":"hillary_clinton_01.npy <span style='color:#111;'> 36.13KB </span>","children":null,"spread":false}],"spread":false},{"title":"latent_directions","children":[{"title":"gender.npy <span style='color:#111;'> 72.13KB </span>","children":null,"spread":false},{"title":"age.npy <span style='color:#111;'> 72.13KB </span>","children":null,"spread":false},{"title":"smile.npy <span style='color:#111;'> 72.13KB </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"training","children":[{"title":"networks_stylegan.py <span style='color:#111;'> 35.86KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 350B </span>","children":null,"spread":false},{"title":"training_loop.py <span style='color:#111;'> 16.51KB </span>","children":null,"spread":false},{"title":"misc.py <span style='color:#111;'> 10.16KB </span>","children":null,"spread":false},{"title":"loss.py <span style='color:#111;'> 10.17KB </span>","children":null,"spread":false},{"title":"networks_progan.py <span style='color:#111;'> 17.16KB </span>","children":null,"spread":false},{"title":"dataset.py <span style='color:#111;'> 11.93KB </span>","children":null,"spread":false}],"spread":false},{"title":"train_effnet.py <span style='color:#111;'> 16.07KB </span>","children":null,"spread":false},{"title":"run_metrics.py <span style='color:#111;'> 4.27KB </span>","children":null,"spread":false},{"title":"adaptive.py <span style='color:#111;'> 19.33KB </span>","children":null,"spread":false},{"title":"mona_example.jpg <span style='color:#111;'> 29.05KB </span>","children":null,"spread":false},{"title":"metrics","children":[{"title":"__init__.py <span style='color:#111;'> 350B </span>","children":null,"spread":false},{"title":"metric_base.py <span style='color:#111;'> 6.33KB </span>","children":null,"spread":false},{"title":"frechet_inception_distance.py <span style='color:#111;'> 3.26KB </span>","children":null,"spread":false},{"title":"perceptual_path_length.py <span style='color:#111;'> 5.10KB </span>","children":null,"spread":false},{"title":"linear_separability.py <span style='color:#111;'> 10.07KB </span>","children":null,"spread":false}],"spread":false},{"title":"train.py <span style='color:#111;'> 16.72KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明