迈向稳健的单眼深度估计:用于零镜头跨数据集传输的混合数据集 该存储库包含用于从单个图像计算深度的代码。 它伴随我们的: 迈向稳健的单眼深度估计:用于零镜头跨数据集传输的混合数据集RenéRanftl,Katrin Lasinger,David Hafner,Konrad Schindler,Vladlen Koltun MiDaS v2.1在10个数据集(ReDWeb,DIML,电影,MegaDepth,WSVD,TartanAir,HRWSI,ApolloScape,BlendedMVS,IRS)上进行了多目标优化训练。 在5个数据集(本文中的MIX 5 )上训练过的原始模型可以在找到。 变更日志 [2020年11月]发布了MiDaS v2.1: 经过10个数据集训练的新模型,其度平均比高出 新的轻量级模型可在移动平台上实现。 适用于和示例应用程序 ,可在机器人上轻松部署 [2
1
EndoSLAM数据集和内窥镜视频的无监督单眼视觉测程和深度估计方法 EndoSLAM数据集概述 我们介绍了一种内窥镜SLAM数据集,该数据集既包含前体数据又包含合成数据。 数据集的离体部分包括标准和胶囊内窥镜记录。 数据集分为35个子数据集。 具体而言,分别存在结肠,小肠和胃的18、5和12个子数据集。 据作者所知,这是已发布的第一个用于胶囊内窥镜SLAM任务的数据集,具有定时6 DoF姿态数据和高精度3D地图地面真相 使用了两种不同的胶囊和传统的内窥镜相机,具有高分辨率和低分辨率,从而产生了不同的相机规格和照明条件。 来自不同相机的图像具有相同器官的不同分辨率和每个相关器官的深度,是所提出数据集的进一步独特功能。 我们还提供了两种类型的无线内窥镜的图像和姿态值,它们在某些方面彼此不同,例如相机分辨率,帧频以及用于检测Z线,十二指肠乳头和出血的诊断结果。 一些子数据集在两个版本中包
1
我们已经更改了存储库,现在可以在找到PackNet-SfM
1