医学图像分割的半监督学习。 近来,半监督图像分割已成为医学图像计算中的热门话题,不幸的是,由于隐私策略等原因,只有少数开源代码和数据集。为了便于评估和公平比较,我们正在尝试建立一个半监督医学图像分割基准,以促进医学影像计算社区中的半监督学习研究。如果您有兴趣,可以随时将实现或想法推送到此存储库。 该项目最初是为我们以前的工作开发的,如果您发现对您的研究有用,请考虑引用以下内容: @article{luo2020urpc, title={Efficient Semi-supervised Gross Target Volume of Nasopharyngeal Carcinoma Segmentation via Uncertainty Rectified Pyramid Consistency}, author={Luo, Xiangde and Liao, Wen
2021-09-07 15:10:50 114KB semi-supervised-learning Python
1
双任务一致性 本文的代码:通过双任务一致性进行半监督医学图像分割( ) @article{luo2021semi, title={Semi-Supervised Medical Image Segmentation through Dual-task Consistency}, author={Luo, Xiangde and Chen, Jieneng and Song, Tao and Wang, Guotai}, journal={AAAI Conference on Artificial Intelligence}, year={2021} } 要求 一些重要的必需软件包包括: 版本> = 0.4.1。 TensorBoardX 的Python == 3.6 一些基本的python软件包,例如Numpy,Scikit-image,SimpleITK,S
2021-09-07 14:29:05 100.02MB semi-supervised-learning Python
1
具有交叉一致性训练 (CCT) 的半监督语义分割 , 本 repo 包含 CVPR 2020 论文的官方实现:Semi-Supervised Semantic Segmentation with Cross-Consistecy Training,它采用了传统的半监督学习的一致性训练框架进行语义分割,扩展到弱监督学习和在多个域。 强调 (1) 语义分割的一致性训练。 我们观察到,对于语义分割,由于任务的密集性,集群假设更容易在隐藏表示而不是输入上强制执行。 (2) 交叉培训。 我们为半监督语义分割提出了 CCT(Cross-Consistency Training),我们在其中定义了许多新的扰动,并展示了对编码器输出而不是输入执行一致性的有效性。 (3) 使用来自多个域的弱标签和像素级标签。 所提出的方法非常简单灵活,并且可以很容易地扩展到使用来自多个域的图像级标签和像素级标签。 要求
1
图上的深度学习最近引起了人们的极大兴趣。然而,大多数工作都集中在(半)监督学习上,导致存在标签依赖重、泛化能力差和鲁棒性弱等缺点。为了解决这些问题,自监督学习 (SSL) 通过精心设计的借口任务提取信息知识,而不依赖于手动标签,已成为图数据的一种有前途和趋势的学习范式。与计算机视觉和自然语言处理等其他领域中的 SSL 不同,图上的 SSL 具有独特的背景、设计思想和分类法。在图自监督学习的框架下,我们及时全面地回顾了使用SSL技术处理图数据的现有方法。我们构建了一个统一的框架,在数学上形式化了图 SSL 的范式。根据借口任务的目标,我们将这些方法分为四类:基于生成的方法、基于辅助属性的方法、基于对比的方法和混合方法。我们进一步总结了图 SSL 在各个研究领域的应用,并总结了图 SSL 的常用数据集、评估基准、性能比较和开源代码。最后,我们讨论了该研究领域的剩余挑战和潜在的未来方向。
2021-09-02 19:06:45 3.13MB 图神经网络 自监督学习 图表示学习
1
#4.2_NEAT_监督学习_Supervised_learning_(机器学习_进化算法_Evolutionary_Algor
2021-09-01 21:00:16 31.41MB 学习资源
USSS_ICCV19 ICCV 2019接受通用半监督语义分割代码。 全文见 。 要求 Python> = 2.6 PyTorch> = 1.0.0 ImageNet预训练的模型是从的存储库下载的。 数据集 城市景观: : IDD: : 怎么跑 python segment.py --basedir --lr 0.001 --num-epochs 200 --batch-size 8 --savedir --datasets [ ..] --num-samples --alpha 0 --beta 0 --resnet --model drnet 致谢 大量代码是从Dilated Residual Networks( )和IDD Dataset( )的官方代码版本中大量借用的。
1
雪球:从大型纯文本集合中提取关系 这是我自己的Snowball系统的实现,用于引导关系实例。 您可以在此处找到更多详细信息: Eugene Agichtein和Luis Gravano,《 。 在第五届ACM数字图书馆会议论文集中。 ACM,200。 H Yu,E Agichtein, 。 于生物信息学,19(增刊1),2003年-牛津大学出版社 可以包含已标记命名实体的句子的样本文件,该文件具有100万个句子,摘自English Gigaword Collection中的《纽约时报》文章。 注意:查看以了解如何提供带标签的文档集合和种子以使用Snowball设置关系实例的自举,这两个系
1
cleanlab:机器学习的标准包,带有嘈杂的标签并在Python中查找标签错误的数据
1
自我监督学习(SSL) 文件 论文2021 RGB-D显着目标检测的自监督表示学习() 通过自我监督的多任务学习来学习特定于形式的表示形式以进行多模态情感分析()() 理解无对比对的自我监督学习动力学()() 多视角的自我监督学习。()( ICLR 2021 ) 与差异的对比:带有噪声标签的学习的自我监督式预训练。()( ICLR 2021 )() 自我监督的可变自动编码器。()( ICLR 2021 ) 自我监督视觉预训练的密集对比学习。()( CVPR 2021 )()() 超越眼界的是:通过提取多模态知识进行自我监督的多目标检测和声音跟踪。()( CVPR 2021 ) AdCo:有效地从自我训练的负面对手中学习无监督表示的对抗性对比。()( CVPR 2021 )() 探索简单的暹罗表示学习。() Barlow Twins:通过减少冗余进行自我监督的学习。()
1
版本 oid sha256:140593c4df24d2a55a892a2997f137514eebbddfc3a1642c25ecc2ee1d7cd3e9大小5514
1