使用 3D 多分辨率 R-CNN 的脑微出血 3D 实例分割框架 由 I-Chun Arthur Liu、Chien-Yao Wang、Jiun-Wei Chen、Wei-Chi Li、Feng-Chi Chang 撰写的论文“3D Instance Segmentation Framework for Cerebral Microbleeds using 3D Multi-Resolution R-CNN”的官方 PyTorch 实现Yi-Chung Lee, Yi-Chu Liao, Chih-Ping Chung, Hong-Yuan Mark Liao, Li-Fen Chen. 论文目前正在审查中。 关键词:3D 实例分割、3D 对象检测、脑微出血、卷积神经网络 (CNN)、磁敏感加权成像 (SWI)、3D Mask R-CNN、磁共振成像 (MRI)、医学成像、pytorch
1
句子的分类非常具有挑战性,因为句子包含的上下文信息有限。 在本文中,我们提出了一种用于句子分类的注意力门控卷积神经网络(AGCNN),该方法通过使用专用的卷积编码器从不同大小的特征上下文窗口中生成注意权重。 它充分利用有限的上下文信息来提取和增强重要特征在预测句子类别中的影响。 实验结果表明,我们的模型可比标准CNN模型提高3.1%的精度,并且在六项任务中的四项上均能获得超过基准的竞争性结果。 此外,我们设计了一个激活函数,即自然对数重定比例的整流线性单位(NLReLU)。 实验表明,NLReLU的性能优于ReLU,可与AGCNN上的其他知名激活功能相媲美。
2022-02-25 18:44:22 128KB Sentence classification convolutional neural
1
一篇关于卷积自编码的论文,写的非常好,此处上传仅仅是为了通过我博客想下载的朋友。
2022-02-24 22:07:59 759KB Convolution autoencoder cae 卷积自编码
1
CNNIQAplusplus 以下论文的PyTorch 1.3实施: 笔记 在这里,选择优化器作为Adam,而不是本文中带有势头的SGD。 训练 CUDA_VISIBLE_DEVICES=0 python main.py --exp_id=0 --database=LIVE --model=CNNIQAplusplus 训练前, im_dir在config.yaml被指定必须的。 可视化 tensorboard --logdir=tensorboard_logs --port=6006 # in the server (host:port) ssh -p port -L 6006:localhost:6006 user@host # in your PC. See the visualization in your PC 要求 conda create -n reproducib
1
用于识别花卉分类的AI应用程序 图像分类器使用卷积神经网络识别不同种类的花朵。 展望未来,人工智能算法将被整合到越来越多的日常应用中。 例如,您可能想在智能手机应用程序中包含图像分类器。 为此,您将使用在数十万张图像上训练的深度学习模型,作为整个应用程序体系结构的一部分。 将来,软件开发中的很大一部分将使用这些类型的模型作为应用程序的通用部分。 在这个项目中,我们将训练一个图像分类器来识别不同种类的花。 您可以想象在电话应用程序中使用类似的内容,该名称可以告诉您相机正在查看的花朵的名称。 实际上,我们将训练该分类器,然后将其导出以用于我们的应用程序。 我们将使用包含102种花卉类别的,您可以在下面看到一些示例。 我们在这里需要做的主要事情是: 加载并预处理图像数据集 在数据集上训练图像分类器 使用训练有素的分类器来预测图像内容 所有这些任务最初都在jupyter笔记本中涵盖。 除了
1
yeap16:CT图像骨分割 的3D创新实验室提供的“代码库。 此代码随附标题为: “使用卷积神经网络进行医学增材制造的骨骼的CT图像分割” 目前正在审查中。 目的 CT扫描的骨分割是医疗计划中必不可少的步骤。 骨结构的确切厚度,方向和位置对于制造患者特定的结构(例如手术指南和植入物)是必不可少的。 在骨骼分割期间,医学图像中的每个像素都被分类为“骨骼”或“背景”。 不幸的是,当前的算法要么缺乏鲁棒性和可靠性,要么需要乏味的手动交互( )。 因此,该存储库包含一个全自动的卷积神经网络(CNN),以执行CT扫描的骨骼分割。 模型训练 使用3例先前在Vrije大学医学中心接受治疗的患者的CT扫描对CNN进行了培训。 根据经验丰富的医学工程师的知识,CT扫描的每个像素都被标记为“骨头”或“背景”。 随机选择了500,000个像素,以在这些选定像素周围创建33x33的轴向补丁。 这些补丁随后
1
一种新的基于卷积神经网络的数据驱动故障诊断方法 本文提出了一种基于LeNet-5的新型CNN进行故障诊断。 通过将信号转换为二维(2-D)图像的转换方法,该方法可以提取转换后的二维图像的特征,并消除手工特征的影响。 我觉得这很有趣,因为它将CNN应用于机械场景。 .py文件是CNN的实现。 但是我没有提供如何预处理数据集。 参考: L. Wen,X. Li,L. Gao和Y. Zhang,“基于卷积神经网络的新的数据驱动的故障诊断方法,”《 IEEE Transactions on Industrial Electronics》,第1卷。 65,不。 7,页5990-5998,2018年7月。
2022-01-22 17:48:05 29KB Python
1
1、使用网路稀疏化方法来对CNN模型进行压缩 2、能够在模型大小、运行内存和运行时间上进行优化 3、准确度的损失在接受范围
2022-01-21 11:05:40 920KB CNN modelcompress
1
UNet:使用PyTorch进行语义分割 在PyTorch中针对高清晰度图像针对Kaggle的自定义实施 。 该模型是从头开始训练的,具有5000张图像(无数据增强),并且在超过100k张测试图像上获得了0.988423(735中的511)的。 可以通过更多的培训,数据增强,微调,使用CRF后处理以及在蒙版边缘上施加更多权重来提高此分数。 Carvana数据可在上。 用法 注意:使用Python 3.6或更高版本 预言 训练好模型并将其保存到MODEL.pth后,您可以通过CLI轻松测试图像上的输出蒙版。 预测单个图像并保存: python predict.py -i image.jpg -o output.jpg 要预测多幅图像并显示它们而不保存它们: python predict.py -i image1.jpg image2.jpg --viz --no-save >
1
TF_Convolutional_Autoencoder 用于在TensorFlow中以高压缩率对RGB图像进行编码/解码的卷积自动编码器 这是从Arash Saber Tehrani的Deep-Convolutional-AutoEncoder教程教程改编而成的示例模板,用于对3通道图像进行编码/解码。 该模板已被完全注释。 我已经在来自香港中文大学的CelebA数据集的重新缩放后的样本上测试了此实现,以在短时间的训练中产生相当不错的结果。 此实现的压缩比为108。即,对于形状为[-1、48、48、3]的输入张量,瓶颈层已减小为形状为[-1、64]的张量。 附加功能: 将3通道图像而不是MNIST用作输入 培训现在执行检查点保存和还原 可以在TensorBoard中查看编码器的输入和解码器的输出 输入自动重定标 用ReakyReLU代替ReLU激活来解决垂死的ReLU 注意事项:
2022-01-12 19:17:54 524KB tensorflow autoencoder rgb-image face-recognition
1