KGCN-火炬 这是 ( )的Pytorch实现: 推荐系统的知识图卷积网络王宏伟,赵M,谢星,李文杰,郭敏仪。 在2019年网络会议论文集(WWW 2019)中 数据集 电影 电影的原始分级文件太大,无法包含在此仓库中。 首先对评级数据进行分类 $ wget http://files.grouplens.org/datasets/movielens/ml-20m.zip $ unzip ml-20m.zip $ mv ml-20m/ratings.csv data/movie/ 音乐 没事做 其他数据集 如果要使用自己的数据集,则需要准备2个数据。 评分数据 每行应包含(user-item-rating) 在此回购中,它是pandas数据框结构。 (看看data_loader.py ) 知识图 每个三元组(头-关系尾)由知识图组成 在此仓库中,它是字典类型。 (看看data_
1
猫狗分类 牛津-IIIT宠物数据集。 问题在于对数据集中显示的每种动物进行分类。 第一步是对猫和猫之间的品种进行分类,然后对猫和猫的品种分别进行分类,最后将种族混合在一起进行分类,从而增加了问题的难度。 步骤1 获取数据集: bash utils / get_dataset.sh 第2步 预处理数据集: bash rul_all_preprocessing.sh 第三步 培训模型的创建: bash run_all_models.sh 第四步 要运行TensorBoard,请打开一个新终端并运行以下命令。 然后,在您的Web浏览器中打开 。 脚本/ 选择你的型号 张量板--logdir ='。/ logs'--port = 6006
1
鬼网 新闻 2020/11/10 TinyNet(NeurIPS 2020)的代码已在发布。 2020/10/31 GhostNet + TinyNet取得了更好的性能。 请参阅我们的NeurIPS 2020论文中的详细信息: 。 2020/09/24我们发布了GhostNet模型,可在和上更多视觉任务。 2020/06/10 GhostNet包含在。 2020/06/08 PyTorch代码包含在此存储库中。 GhostNet:廉价运营带来的更多功能。 CVPR2020。 韩开,王云和,田琦,郭建元,徐春景,徐昌。 方法 性能 GhostNet击败了其他SOTA轻量级C
1
验证码识别CAPTCHA_recognizing 第九届中国大学生服务外包创新创业大赛-A16验证码识别(河海大学-李说啥都对) 本项目抛弃了传(过)统(时)的SVM支持向量机,使用卷积神经网络(Convolutional Neural Networks, CNN)针对所给验证码进行识别,五类验证码的准确率均在95%+,第一类竟达到100%。Let's come to the point! 第一类验证码 First CAPTCHA 第一类验证码为四则运算验证码,包含一个四则运算,验证方法为要求用户输出运算表达式及结果。验证码包含噪点干扰。如图示例: 卷积操作拓扑图如下: 第二类验证码 Second CAPTCHA 第二类验证码为英文字母+数字验证码,包含5个字符,验证方法为要求用户输出验证码中的字符,大小写不限。验证码包含噪点干扰,文字无旋转形变。如图示例: 第三类验证码 Third CA
2021-12-01 12:23:37 560KB Python
1
免责声明 没有积极维护该存储库。 这是一篇硕士论文的结果,如果有人想复制论文的结果,可以将该代码作为参考。 鸟类种类分类 这些是在Chalmers University of Technology进行的硕士学位论文的项目文件。 该项目的目的是通过使用深度残差神经网络,多宽度频率增量数据增强和元数据融合来构建和训练鸟类分类器,从而改进最先进的鸟类分类器。带有相应物种标签的鸟类歌曲数据。 如果该资料库对您的研究有用,请引用硕士论文。 设置 $ git clone https://github.com/johnmartinsson/bird-species-classification $ virtualenv -p /usr/bin/python3.6 venv $ source venv/bin/activate (venv)$ pip install -r requirements.txt
1
High computational complexity hinders the widespread usage of Convolutional Neural Networks (CNNs), especially in mobile devices. Hardware accelerators are arguably the most promising approach for reducing both execution time and power consumption. One of the most important steps in accelerator development is hardware-oriented model approximation. In this paper we present Ristretto, a model approximation framework that analyzes a given CNN with respect to numerical resolution used in representing weights and outputs of convolutional and fully connected layers. Ristretto can condense models by using fixed point arithmetic and representation instead of floating point. Moreover, Ristretto fine-tunes the resulting fixed point network. Given a maximum error tolerance of 1%, Ristretto can successfully condense CaffeNet and SqueezeNet to 8-bit. The code for Ristretto is available. Comments: 8 pages, 4 figures, Accepted as a workshop contribution at ICLR 2016. Updated comparison to other works Subjects: Computer Vision and Pattern Recognition (cs.CV)
1
维特比解码matlab代码使用维特比算法解码卷积码 我可以说Python比MATLAB慢,并且比C语言慢得多
2021-11-27 23:36:33 2KB 系统开源
1
时空分割 该存储库包含的随附代码 。 变更记录 2020-05-19自提交以来,最新的Minkowski引擎不需要明确的缓存清除,并且可以更有效地使用内存。 2020-05-04:正如Thomas Chaton在上指出的那样,我还发现训练脚本包含一些错误,这些错误使模型无法达到使用最新MinkowskiEngine的Model Zoo中描述的目标性能。 我正在调试错误,但是发现错误有些困难。 因此,我从另一个私有创建了另一个git repo ,该达到了目标性能。 请参阅以获得ScanNet培训。 一旦发现错误,我将更新此存储库,并将SpatioTemporalSegmentation-ScanNet与该存储库合并。 抱歉,添麻烦了。 要求 Ubuntu 14.04或更高版本 CUDA 10.1或更高版本 pytorch 1.3或更高版本 python 3.6或更高版本 GCC 6或更高 安装 您需要通过pip或anaconda安装pytorch和 。 点子 MinkowskiEngine通过分发,可以通过pip进行简单安装。 首先,按照安装pytorch。 接下来,安装openbl
1
《A Sensitivity Analysis of (and Practitioners’ Guide to) Convolutional》原文及译文
2021-11-26 18:10:06 1.01MB NLP 期刊阅读
1
VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE RECOGNITION非常经典的VGG-NET框架就是出自这篇文章
2021-11-25 22:36:44 195KB VGG-NET
1