Convolutional Neural Networks的Matlab代码,可经过代码文件test_example_CNN.m,对手写字体进行训练测试
2022-05-29 21:38:27 8KB CNN Matlab 卷积神经网络
1
基于全卷积Fully-Convolutional-Siamese-Networks的目标跟踪仿真+word版说明文档 版本组合:Win7+Matlab R2015b+CUDA7.5+vs2013 文档中提供了上述运行环境的配置方法 注意事项(仿真图预览可参考博主博客里面"同名文章内容"。)
2022-05-26 12:05:57 99.8MB 目标跟踪 人工智能 计算机视觉 全卷积
手写数字识别是一种通过不同的机器学习模型自动识别和检测手写数字数据的技术或技术。 在本文中,我们使用各种机器学习算法来提高技术的生产力并降低使用各种模型的复杂性。 机器学习是人工智能的一种应用,它从以前的经验中学习并通过经验自动改进。 我们说明了各种机器学习算法,例如支持向量机、卷积神经网络、量子计算、K-最近邻算法、识别技术中使用的深度学习。
2022-05-24 20:16:27 487KB Convolutional Neural Network
1
Fundamentals of Convolutional Coding.pdf Fundamentals of Convolutional Coding.pdf
2022-05-23 20:51:40 3.95MB 算法
1
学习卷积神经网络的面部反欺骗 “”论文的实现 结果 CASIA内测 原始数据集:或(密码:h5un) 规模 1.0 1.4 1.8 2.2 2.6 吝啬的 开发EER 0.1094 0.0408 0.0346 0.0339 0.0670 0.0571 测试HTER 0.1033 0.0492 0.0568 0.0675 0.0875 0.0729 测试EER 0.0923 0.0461 0.0578 0.0665 0.0790 0.0683
2022-05-21 11:13:34 12KB deep-learning mxnet face-antispoofing Python
1
时空图卷积网络用于基于骨架的动作识别,Spatial Temporal Graph Convolutional Networks for Skeleton Based Action Recognition,2018年AAAI论文
2022-05-19 12:31:53 1.5MB 时空卷积
1
具有并行计算的卷积神经网络的C ++库(openMP,CUDA,MPI) 用法: g ++ -std = c ++ 11 -fopenmp lenet.cpp -o lenet ./lenet 这是模型的多线程版本(具有数据并行性),您可以使用以下方法更改线程数: 导出OMP_NUM_THREADS = 4 要使用MPI版本的代码,您需要使用mpic ++进行编译: mpic ++ -std = c ++ 11 -fopenmp lenet.cpp -o lenet 您可以在多节点系统上运行它! 创建自己的网络 您可以通过派生Model类并使用addLayer()方法按顺序添加所有图层来创建自己的深度神经网络类。 您还可以通过扩展ActivationLayer来引入自己的激活层。 您可以通过扩展LossFunction类来创建自定义Loss函数。 工作正在进行中 使用以下方法进
2022-05-13 18:00:15 10.98MB C++
1
图卷积网络用于高光谱图像分类 , ,,,, 该工具箱中的代码实现了 。 更具体地,其详细如下。 引文 如果此代码对您的研究有用且有帮助,请引用论文。 D. Hong,L。Gao,J。Yao,B。Zhang,A。Plaza,J。Chanussot。 用于高光谱图像分类的图卷积网络,IEEE Trans。 Geosci。 遥感,2020,DOI:10.1109 / TGRS.2020.3015157。 @article{hong2020graph, title = {Graph Convolutional Networks for Hyperspectral Image Classification}, author = {D. Hong and L. Gao and J. Yao and B. Zhang and A. Plaza and J. Chanusso
2022-05-10 20:53:01 41.38MB Python
1
用卷积滤波器matlab代码Matlab卷积自动编码器 卷积自动编码器的成本函数(cautoCost2.m)和成本梯度函数(dcautoCost2.m)。 网络体系结构相当有限,但是这些功能对于将输入与一组过滤器进行卷积然后重构的无监督学习应用程序应该是有用的。 这对于发现数据的平移不变特征也很有用。 输入被输入到卷积层,该卷积层是应用于所有用户定义的数据子集的一组过滤器。 卷积层的输入输出功能是S形的。 重建层(或输出层)是线性的。 夹在卷积和重建层之间的可选附加隐藏层是S形。 可以在文件cautoCost2.m的注释中找到更多信息。 注意:此代码在一些地方使用了parfor,这是并行的for循环。 这需要并行化工具箱。 如果没有并行化工具箱,请将parfor循环替换为for循环。
2022-05-09 19:16:31 9KB 系统开源
1
由于电力线绝缘子的故障导致输电系统的故障,因此广泛使用基于空中平台的绝缘子检查系统。 绝缘子缺陷检测是针对航空图像中的复杂背景执行的,这提出了一个有趣但具有挑战性的问题。基于手工特征或浅层学习技术的传统方法只能在特定的检测条件下(例如何时)定位绝缘子并检测故障。在某些对象范围或特定照明条件下,具有足够的先验知识,背景干扰小。 本文讨论了使用航空图像自动检测绝缘子缺陷,准确定位从实际检查环境捕获的输入图像中出现的绝缘子缺陷的方法。我们提出了一种新颖的深度卷积神经网络(CNN)。级联体系结构,用于执行定位和检测。绝缘子中的缺陷。 级联网络使用基于区域提议网络的CNN将缺陷检查转换为两级目标检测问题。 为了解决实际检查环境中缺陷图像的稀缺性,还提出了一种数据增强方法,该方法包括以下四个操作:1)仿射变换; 2)仿射变换; 2)仿射变换。 2)绝缘子分割和背景融合; 3)高斯模糊; 4)亮度转换。 使用标准绝缘子数据集,缺陷检测精度和建议方法的召回率分别为0.91和0.96,并且可以成功检测到各种条件下的绝缘子缺陷。 实验结果表明,该方法符合绝缘子缺陷检测的鲁棒性和准确性要求。
2022-05-05 02:08:54 1.25MB Aerial image;convolutional neural network;data
1