由于电力线绝缘子的故障导致输电系统的故障,因此广泛使用基于空中平台的绝缘子检查系统。 绝缘子缺陷检测是针对航空图像中的复杂背景执行的,这提出了一个有趣但具有挑战性的问题。基于手工特征或浅层学习技术的传统方法只能在特定的检测条件下(例如何时)定位绝缘子并检测故障。在某些对象范围或特定照明条件下,具有足够的先验知识,背景干扰小。 本文讨论了使用航空图像自动检测绝缘子缺陷,准确定位从实际检查环境捕获的输入图像中出现的绝缘子缺陷的方法。我们提出了一种新颖的深度卷积神经网络(CNN)。级联体系结构,用于执行定位和检测。绝缘子中的缺陷。 级联网络使用基于区域提议网络的CNN将缺陷检查转换为两级目标检测问题。 为了解决实际检查环境中缺陷图像的稀缺性,还提出了一种数据增强方法,该方法包括以下四个操作:1)仿射变换; 2)仿射变换; 2)仿射变换。 2)绝缘子分割和背景融合; 3)高斯模糊; 4)亮度转换。 使用标准绝缘子数据集,缺陷检测精度和建议方法的召回率分别为0.91和0.96,并且可以成功检测到各种条件下的绝缘子缺陷。 实验结果表明,该方法符合绝缘子缺陷检测的鲁棒性和准确性要求。
1