信用风险建模:使用Python和ML进行信用风险分析
2022-12-29 02:06:15 7.75MB python machine-learning numpy scikit-learn
1
克拉克·范·史丹顿(Clarke van Steenderen) 动物学与昆虫学系南非东开普省Makhanda(Grahamstown)的Rhodes University 2021年电子邮件: :pencil: 功能性 SPEDE-SAMPLER是用Python和R编写的GUI程序,用于使用GMCY方法评估采样对物种划界的影响。 该程序提供以下内容: 读取对齐的Fasta文件,并随机选择n次序列p次。 这些文件保存在输出文件夹中。 例如,可以上传十个COI序列的序列比对。 用户可能希望随机选择该数据集的50%而不进行替换,并将此过程重复15次。 因此,该程序会将15个Fasta文件写到一个文件夹中,其中每个文件包含五个序列的随机选择。 循环遍历输出文件夹,以为每个重新采样的Fasta文件产生最大似然(ML)系统发育。 有两种ML程序可用:FastTree和RAxML。 循环遍历每个ML系统
2022-12-26 14:26:36 949KB Python
1
Coursera吴恩达机器学习课程整理
1
matlab中存档算法代码学术档案 选定的已存档MATLAB算法和处理示例 潜在的操作PDF-附录中包含生成的结果和MATLAB代码(2021) P1,P2-技术报告(撰写示例)(2020年) 可交付成果6-后处理硬件HR数据(2020) 角度算法-利用ImageJ和EMG传感器的数据进行Gata分析(2019)
2022-12-11 20:43:34 2.28MB 系统开源
1
all data for the match train.csv test.csv sample_submission.csv
2022-12-11 16:33:28 40.8MB ai ml
1
ML-EM算法  EM算法(Expectation Maximization Algorithm,期望极大算法)是一种解决优化问题的迭代算法,用于求解含有隐变量的概率模型参数的极大似然估计(MLE)或极大后验概率估计(MAP)。EM算法是一种比较通用的参数估计算法,被广泛用于支持向量机(SMO算法)、朴素贝叶斯、GMM(高斯混合模型)、K-means(K均值聚类)和HMM(隐马尔可夫模型)的参数估计。 理解EM算法(例子)   在统计学中,概率用于在已知一些参数的情况下,预测接下来的所得到的结果;而似然性则是用于在已知某些观测所得到的结果时,对有关事物的性质的参数进行估计。   EM算法和极大似然估计的前提是一样的,都要假设数据总体的分布,如果不知道数据分布,是无法使用EM算法的。 三硬币模型   假设有3枚硬币A,B,C,这些硬币正面出现的概率分别是π \piπ,p pp和q qq。进行如下掷硬币试验:先掷硬币A,根据其结果选出硬币B或硬币C,正面选硬币B,反面选硬币C;然后掷选出的硬币,掷硬币的结果,正面记作1,反面记作0;独立重复n此试验,观测结果: 1 , 1 , 0 ,
1
使用机器学习进行疾病诊断 医疗保健领域的机器学习模型。 乳腺癌检测-使用KNN和SVM 糖尿病发作检测-使用神经网络和网格搜索 角膜动脉疾病(心脏病)诊断-使用神经网络 自闭症谱系障碍(神经发育障碍)诊断-使用简单的神经网络 数据集从UCI机器学习存储库获得。
1
Coursera, 机器学习专项课程, Machine Learning:Unsupervised Learning, Recommenders, Reinforcement Learning第一周所有jupyter notebook文件(包括实验室练习文件)
2022-12-03 16:27:03 3.47MB ML-新课代码
1
Coursera, 机器学习专项课程, Machine Learning:Unsupervised Learning, Recommenders, Reinforcement Learning第二周所有jupyter notebook文件(包括实验室练习文件)
2022-12-03 16:27:02 1.88MB ML-新课代码
1
Coursera, 机器学习专项课程, Machine Learning:Unsupervised Learning, Recommenders, Reinforcement Learning第三周所有jupyter notebook文件(包括实验室练习文件)
2022-12-03 16:27:02 4.66MB ML-新课代码
1