CT重建算法之统计迭代类算法;ML-EM算法(matlab的实现版本)

上传者: 44603934 | 上传时间: 2022-12-06 19:29:02 | 文件大小: 4KB | 文件类型: RAR
ML-EM算法  EM算法(Expectation Maximization Algorithm,期望极大算法)是一种解决优化问题的迭代算法,用于求解含有隐变量的概率模型参数的极大似然估计(MLE)或极大后验概率估计(MAP)。EM算法是一种比较通用的参数估计算法,被广泛用于支持向量机(SMO算法)、朴素贝叶斯、GMM(高斯混合模型)、K-means(K均值聚类)和HMM(隐马尔可夫模型)的参数估计。 理解EM算法(例子)   在统计学中,概率用于在已知一些参数的情况下,预测接下来的所得到的结果;而似然性则是用于在已知某些观测所得到的结果时,对有关事物的性质的参数进行估计。   EM算法和极大似然估计的前提是一样的,都要假设数据总体的分布,如果不知道数据分布,是无法使用EM算法的。 三硬币模型   假设有3枚硬币A,B,C,这些硬币正面出现的概率分别是π \piπ,p pp和q qq。进行如下掷硬币试验:先掷硬币A,根据其结果选出硬币B或硬币C,正面选硬币B,反面选硬币C;然后掷选出的硬币,掷硬币的结果,正面记作1,反面记作0;独立重复n此试验,观测结果: 1 , 1 , 0 ,

文件下载

资源详情

[{"title":"( 5 个子文件 4KB ) CT重建算法之统计迭代类算法;ML-EM算法(matlab的实现版本)","children":[{"title":"ML-EM","children":[{"title":"medfuncMlem_2.m <span style='color:#111;'> 1.17KB </span>","children":null,"spread":false},{"title":"medfuncParallelBeamForwardProjection.m <span style='color:#111;'> 993B </span>","children":null,"spread":false},{"title":"medfuncMlem_1.m <span style='color:#111;'> 419B </span>","children":null,"spread":false},{"title":"medfuncSystemMatrix.m <span style='color:#111;'> 6.37KB </span>","children":null,"spread":false},{"title":"ML_EM.m <span style='color:#111;'> 848B </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明