时变多车型算法,进行车辆路径的优化问题的求解,考虑车型的差异来进行算法的优化
2022-09-18 22:24:48 6KB 车辆 多车型 vehicle 车辆路径问题
卡通车辆VRace工具包物理1.0unity3d 资源
2022-08-02 19:05:57 29MB 卡通车辆 unity3d
1
NWH Vehicle Physics 1.9.2汽车物理控制器插件NWH Vehicle Physics 1.9.2汽车物理控制器插件NWH Vehicle Physics 1.9.2汽车物理控制器插件NWH Vehicle Physics 1.9.2汽车物理控制器插件NWH Vehicle Physics 1.9.2汽车物理控制器插件NWH Vehicle Physics 1.9.2汽车物理控制器插件NWH Vehicle Physics 1.9.2汽车物理控制器插件NWH Vehicle Physics 1.9.2汽车物理控制器插件NWH Vehicle Physics 1.9.2汽车物理控制器插件NWH Vehicle Physics 1.9.2汽车物理控制器插件NWH Vehicle Physics 1.9.2汽车物理控制器插件NWH Vehicle Physics 1.9.2汽车物理控制器插件NWH Vehicle Physics 1.9.2汽车物理控制器插件NWH Vehicle Physics 1.9.2汽车物理控制器插件NWH Vehicle Physics 1.9.
2022-07-12 18:10:15 479.81MB NWHVehiclePhys
1
基于MBPLS的城轨列车悬挂系统故障诊断,魏秀琨,郭英,悬挂系统对城轨列车起着至关重要的作用。悬挂系统的故障检测是确保列车运行的安全,运行稳定的一种有效的途径。本文主要研究基于
2022-07-10 13:13:07 453KB Fault detection
1
纯电动汽车能量制动回收MATLAB建模,适合新能源汽车的学生使用
AICity-reID 2020(第二轨) 在此存储库中,我们将2020 re-id曲目的第一名提交(百度提交) 我们融合了在Paddlepaddle和Pytorch上训练的模型。为了说明它们,我们分别提供了以下两个训练部分。 我们在包括培训代码。 我们在包括培训代码。 表现: AICITY2020 Challange Track2排行榜 队名 地图 关联 百度-UTS(我们的) 84.1% 瑞亚爱 78.1% DMT 73.1% 提取的特征,相机预测和方向预测: 我已经更新了功能。您可以从或下载 ├── final_features/ │ ├── features/ /* extracted pytorch feature │ ├── pkl_feas/ /* extracted paddle feat
2022-05-17 00:01:04 8.91MB pytorch vehicle paddlepaddle vehicle-reid
1
颜色分类leetcode 车辆探测器 该项目 我对这个项目的目标是: 通过删除重复图像(或接近重复)来清理图像数据集。 从标记的训练图像集中提取特征以构建包含以下内容的特征向量: 定向梯度(HOG) 特征的直方图。 颜色直方图特征。 空间颜色特征。 训练线性 SVM分类器以基于 识别汽车与非汽车。 使用 SVM 和滑动窗口技术搜索车辆。 估计检测到的车辆的边界框。 这个怎么运作 该车辆检测器使用带有非线性 SVM 的滑动窗口搜索来将图像中的不同窗口分类为是否包含汽车。 从那以后,我们随着时间的推移进行整合以消除误报分类。 然而,在讨论检测管道之前,我需要解释样本选择和训练过程。 样本选择 对于该项目,提供了超过 8000 张 64x64px 的车辆和非车辆类别的组合图像(下面进一步讨论)。 由于这些样本来自视频,因此由于视频的连续成名看起来非常相似,因此许多图像看起来几乎相同。 我没有使用这个数据集进行训练,这会导致人为地提高验证准确性或导致训练集的多样性降低,我删除了几乎重复的图像。 这是由clean_dataset.py完成的,它使用图像散列算法一次检查每个图像,并拒绝任何与先前观
2022-05-09 10:27:22 83.94MB 系统开源
1
车辆的检测和计数在智能交通系统中具有重要作用,特别是在交通管理中。 交通问题已成为城市规划者多年来面临的最大问题。 更准确地检测移动车辆,几种计算机视觉技术,车辆计数是通过使用虚拟检测区域来完成的。 交通分析将计算每个任意时间段内某个区域内的车辆数量并对车辆进行分类。 但是移动车辆及其检测、跟踪和计数对于监控、规划和控制交通流量非常重要。 通过分析摄像机记录的交通流序列视频,结合虚拟检测器和斑点跟踪技术应用基于视频的解决方案技术,YOLO是必要的。 通过这项技术,我们将 Open CV 应用于实时视频应用。 这些方法帮助我们对移动的车辆进行检测、跟踪、计数和分类。
2022-05-08 14:51:31 1.01MB Vehicle dataset Image
1
百度apollo定位文献中文翻译 Robust and Precise Vehicle Localization based on Multi-sensor Fusion in Diverse City Scenes
2022-05-07 11:24:08 4.26MB 百度apollo 定位
1
Matlab R2012b代码模糊与神经模糊的车辆导航MATLAB代码 要求 MATLAB(已通过R2012b,R2015a和R2018a测试) 模糊逻辑工具箱 目标 给定包含障碍物的地图,将车辆引导至给定目标。 随时可用的唯一信息是距最近障碍物的距离以及与目标的角度,而我们只能控制车辆在每个可能方向上的速度。 模糊系统 使用适用于常识的规则解决了该问题。 为两个输入变量构造了两个分区(角度和距离的“好”和“坏”),而输出可以是“低”,“中等”或“高”速度。 第一个模糊系统(fuzzy_system_3_rules.fis)根据以下规则建模: 如果角度为“好”而距离为“好”,则速度为“高”。 如果角度为“坏”,则速度为“低”。 如果角度为“好”而距离为“差”,则速度为“中等”。 对于第二模糊系统(fuzzy_system_5_rules.fis),该角度也可以是“垂直”(接近90度的角度),并且距最近障碍物的距离也可以是“最差”(确实接近障碍物)。 该系统以上述规则以及以下规则为模型: 如果角度为“垂直”且距离为“不良”,则速度为“高”。 如果距离为“最差”,则速度为“中等”。 对于给
2022-05-02 09:03:08 431KB 系统开源
1