经典书籍,值得收藏
2021-12-22 16:26:35 13.73MB 统计推断
1
因果推断综述,介绍了因果推断的相关工作,理论基础等,与机器学习的关系,以及在工业界的应用,对于互联网从业者非常有帮助
2021-12-21 16:35:05 1.26MB causual
1
jetson nano 和tx2跑jetson-inference的时候如果上不了外网,下载东西会卡住。把下好的东西放进去,然后把这个文件替换原文件就可以编译成功了。
2021-12-20 00:11:23 6KB jetson-inference cmake
1
pgmpy pgmpy是一个用于处理概率图形模型的python库。 支持的文档和算法列表在我们的官方网站使用pgmpy的示例: : 使用pgmpy的概率图形模型基础教程: : 我们的邮件列表位于 。 我们在社区聊天。 依存关系 pgmpy具有以下非可选依赖项: python 3.6或更高版本 网络X 科学的 麻木 火炬 一些功能还需要: tqdm 大熊猫 剖析 统计模型 作业库 安装 pgmpy在pypi和anaconda上都可用。 通过anaconda安装使用: $ conda install -c ankurankan pgmpy 通过pip安装: $ pip
1
之字形回旋镖 概述 马尔可夫链蒙特卡罗(MCMC)方法用于从概率分布中进行采样,例如贝叶斯模型中的后验分布。 在ZigZagBoomerang.jl中实现的分段确定性蒙特卡洛(PDMC)方法具有相同的目标,不同的是,此处的分布是通过粒子的连续运动而不是一次移动一个点来进行探索的。 在此,粒子在随机时间改变方向,并在确定性轨迹上移动(例如,沿着恒定速度的直线,请参见图片) 校准随机方向的变化,以使粒子的轨迹采样正确的分布; 从轨迹可以估算出感兴趣的量,例如后均值和标准差。 是否改变方向的决定仅需要评估偏导数,该偏导数依赖于很少的坐标-坐标在马尔可夫毯子中的邻域。 这样就可以使用Julia的多线程并行性(或其他形式的并行计算)来利用多个处理器内核。 约里斯·比尔肯(Joris Bierken)的“以及我们关于话语是ZigZagBoomerang.jl所涵盖方法的理论和应用的良好起点。
1
Efron 教授 2010 年的一本新书Large-Scale Inference 通过此书可以感受到古典几何学与现代统计学的结合之美 获取此书不易 希望大家抓紧时间下载!
1
Computer Vision - Models, Learning, and Inference。计算机视觉,模型学习和推理的英文版。
2021-12-04 18:18:56 110.31MB 计算机视觉 入门 英文 人工智能
1
免责声明 这个项目很稳定,可以长期支持。 它可能包含新的实验代码,其API可能会更改。 因果ML:用于ML进行抬升建模和因果推理的Python包 Causal ML是一个Python软件包,它提供了一套基于最近研究的,使用机器学习算法的提升模型和因果推理方法。 它提供了一个标准界面,允许用户从实验或观察数据中估计条件平均治疗效果(CATE)或个体治疗效果(ITE)。 本质上,它为具有观察特征X用户估计了干预T对结果Y的因果影响,而无需对模型形式做出强烈假设。 典型的用例包括 广告系列定位优化:提高广告系列投资回报率的重要手段是将广告定位到在给定的KPI(例如参与度或销售)方面有良好响应的一组客
1
pure-predict:纯Python中的机器学习预测
1