之字形回旋镖 概述 马尔可夫链蒙特卡罗(MCMC)方法用于从概率分布中进行采样,例如贝叶斯模型中的后验分布。 在ZigZagBoomerang.jl中实现的分段确定性蒙特卡洛(PDMC)方法具有相同的目标,不同的是,此处的分布是通过粒子的连续运动而不是一次移动一个点来进行探索的。 在此,粒子在随机时间改变方向,并在确定性轨迹上移动(例如,沿着恒定速度的直线,请参见图片) 校准随机方向的变化,以使粒子的轨迹采样正确的分布; 从轨迹可以估算出感兴趣的量,例如后均值和标准差。 是否改变方向的决定仅需要评估偏导数,该偏导数依赖于很少的坐标-坐标在马尔可夫毯子中的邻域。 这样就可以使用Julia的多线程并行性(或其他形式的并行计算)来利用多个处理器内核。 约里斯·比尔肯(Joris Bierken)的“以及我们关于话语是ZigZagBoomerang.jl所涵盖方法的理论和应用的良好起点。
1