这是(深度学习框架MXnet)mxnet-the-straight-dope-master的一些资料。关于如何安装mxnet模块,这个我在博客中记录过,欢迎大家交流学习。
2022-11-22 14:02:06 17.26MB mxnet 深度学习框架 deep learning
文件夹说明: 1. ./divert -- 全部进行像素反转后的 60000 张训练集图片; 2. ./divert_test -- 全部进行像素反转后的 60000 张测试集图片; 3. ./rotate -- 全部进行图像旋转后的 60000 张训练集图片; 4. ./rotate_test -- 全部进行图像旋转后的 60000 张测试集图片; 5. ./divert_and_rotate -- 像素反转后的 30000 张训练集图片 + 图像旋转后的 30000 张训练集图片; 6. ./divert_and_rotate_test -- 像素反转后的 30000 张测试集图片 + 图像旋转后的 30000 张测试集图片; 7. ./raw -- 手动创建的测试集图片,1-9 没有进行旋转,r1-r9 进行了不同角度的旋转 8. label_train.txt -- 训练集 label 9. label_test.txt -- 测试集label
2022-11-22 11:25:25 135MB pytorch MNIST deep learning
1
更新(2021年2月1日) 注意力! 该存储库将不再维护,请检查我们新的Deep Forest存储库,以提高效率。 详细信息在: 仓库: : 文档: : PyPI上的软件包: ://pypi.org/project/deep-forest/ 您可以通过pip安装较新版本的gcForest pip install deep-forest 此存储库中的旧版本(gcForest v1.1.1)仅用作该算法的说明。 gcForest v1.1.1来了! 这是gcForest实施的官方克隆。(大学的Web服务器有时不稳定,因此我们将官方克隆放在github上) 软件包官方网站: : 该软件包按“原样”提供,免费供学术使用。 您可以自行承担运行风险。 出于其他目的,请联系教授( )。 说明:[1]中提出的gcForest的python 2.7实现。 gcFores
1
机器学习是量化金融中一个越来越重要和有争议的话题。 关于机器学习技术是否可以成为实用的投资工具,一直存在激烈的争论。 尽管机器学习算法可以发现微妙的、上下文的和非线性的关系,但在尝试从嘈杂的历史数据中提取信号时,过度拟合会带来重大挑战。 在本文中,我们描述了一些围绕机器学习的基本概念,并提供了一个简单的例子,说明投资者如何使用机器学习技术来预测股票收益的横截面,同时限制过度拟合的风险。
2022-11-20 06:59:23 1.41MB Machine Learning Return
1
learning-to-communicate, 多Agent强化学习的学习与学习 基于的多agent增强学习学习方法研究杰克。Foerster ,Yannis M 。 Assael,Nando de Freitas,Shimon Whiteson 我们考虑在环境中使用多代理感知和行为的问题,目标是最大化它们的共享
2022-11-19 23:33:10 38KB 开源
1
英文原版 Tap The Power of TensorFlow and Theano with Keras, Develop Your First Model, Achieve State-Of-The-Art Results
2022-11-19 10:34:58 2.49MB DeepLearning
1
Feature Engineering for Machine Learning_Principles and Techniques for Data Scientists(2018.03).A4
2022-11-18 14:57:30 6.16MB 机器学习 特种工程
1
Feature Engineering for Machine Learning and Data Analytics (Chapman & Hall/CRC Data Mining and Knowledge Discovery Series) ISBN-10 书号: 1138744387 ISBN-13 书号: 9781138744387 Edition 版本: 1 出版日期: 2018-04-04 pages 页数: 418 Chapter 1 Preliminaries and Overview Guozhu Dong and Huan Liu Part I Feature Engineering for Various Data Types Chapter 2 Feature Engineering for Text Data Chase Geigle, Qiaozhu Mei, and ChengXiang Zhai Chapter 3 Feature Extraction and Learning for Visual Data Parag S. Chandakkar, Ragav Venkatesan, and Baoxin Li Chapter 4 Feature-Based Time-Series Analysis Ben D. Fulcher Chapter 5 Feature Engineering for Data Streams Yao Ma, Jiliang Tang, and Charu Aggarwal Chapter 6 Feature Generation and Feature Engineering for Sequences Guozhu Dong, Lei Duan, Jyrki Nummenmaa, and Peng Zhang Chapter 7 Feature Generation for Graphs and NetworksYuan Yao, Hanghang Tong, Feng Xu, and Jian Lu Part lI General Feature Engineering Techniques Chapter 8 Feature Selection and Evaluation Yun Li and Tao Li Chapter 9 Automating Feature Engineering in Supervised Learning Udayan Khurana Chapter 10 Pattern-Based Feature Generation Yunzhe Jia, James Bailey, Ramamohanarao Kotagiri, and Christopher Leckie Chapter 11 Deep Learning for Feature Representation Suhang Wang and Huan Liu Part ll Feature Engineering in Special Applications Chapter 12 Feature Engineering for Social Bot Detection Onur Varol, Clayton A. Davis, Filippo Menczer, and Alessandro Flammini Chapter 13 Feature Generation and Engineering for Software Analytics Xin Xia and David Lo Chapter 14 Feature Engineering for Twitter-Based Applications Sanjaya Wijeratne, Amit Sheth, Shreyansh Bhatt, Lakshika Balasuriya, Hussein S. Al-Olimat, Manas Gaur, Amir Hossein Yazdavar, Krishnaprasad Thirunarayan Index
2022-11-18 14:53:08 22.18MB Machine lear
1
在学习传智播客C语言课程中总结的笔记,没有讲基本的C语言的基本语法,而是从指针的角度和接口封装角度学习了对C的理解,希望对大家有帮助
2022-11-17 21:43:12 2.1MB c learning
1
受成分限制的基于注意力的网络(CrabNet) 该软件包实现了成分受限的基于注意力的网络( CrabNet ),该网络仅采用成分信息来预测材料特性。 目录 如何引用 安装 复制出版物结果 使用CrabNet或DenseNet训练或预测材料属性 如何引用 如果要使用CrabNet请引用以下工作: (insert BibTeX citation) 安装 此代码使用PyTorch创建神经网络模型。 为了进行快速的模型训练和推理,建议您使用带有最新驱动程序的NVIDIA GPU。 Windows用户应该可以按照以下步骤通过Anaconda安装所有必需的Python软件包。 Linux用户还需要
2022-11-17 21:06:16 188.35MB machine-learning scikit-learn pytorch transformer
1