Average reward reinforcement learning Foundations algorithms and empirical results (1996):强化学习采用平均奖励目标函数
2022-10-17 17:07:24 2.14MB
1
Deep-Learning-with-Pytorch
2022-10-17 13:05:31 1.22MB 深度学习
1
最近课程需要做论文Presentation,选了一篇2014年的,DeepWalk: Online Learning of Social Representations,有需要的可以下载
2022-10-17 10:31:02 2.35MB DeepWalk LanguageModelin Network latentrepresent
1
使用步骤 1.安装labelme,使用 pip install labelme 命令即可。 2.在labelme环境下输入 labelme命令,打开labelme软件,对图片进行标记,具体方法就是用多边形将所有水体部分圈起来命名为water,并保存文件(json格式)。 3.将main.m文件内fname和imagename改为对应的json文件名和image文件名,之后使用matlab运行main.m文件,稍等片刻,即可看到训练过程,训练结束后可以看到ac率和预测后图像和原始图像的对比。 labelme的GitHub地址: 文件中包含两个测试样例,image1和image2,分别是单通道的遥感水体图像,分辨率为79317301和一个从网上下载的RGB水体图像,分辨率为500333.
2022-10-13 21:04:42 32.63MB MATLAB
1
自我监督视觉预训练的密集对比学习 该项目托管用于实现DenseCL算法以进行自我监督表示学习的代码。 王新龙,张如凤,沉春华,Kong涛,李磊在:Proc。 IEEE Con​​f。 2021年的计算机视觉和模式识别(CVPR) arXiv预印本( ) 强调 增强密集预测: DenseCL预训练模型在很大程度上有利于密集预测任务,包括对象检测和语义分段(最高+ 2%AP和+ 3%mIoU)。 简单的实现: DenseCL的核心部分可以用10行代码实现,因此易于使用和修改。 灵活的用法: DenseCL与数据预处理脱钩,因此可以快速灵活地进行培训,同时不知道使用哪种增强方法以及如何对图像进行采样。 高效的培训:与基准方法相比,我们的方法引入的计算开销可忽略不计(仅慢1%)。 更新 发布了DenseCL的代码和预训练模型。 (02/03/2021) 安装 请参考进行安装和数据集准备。
1
深度学习的概念源于人工神经网络的研究。含多隐层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。
2022-10-13 15:20:26 13.26MB 深度学习
1
Rebiber:使用官方信息标准化bibtex的工具。 我们经常引用使用他们的arXiv的论文版本不提的是,他们在一些会议已经发布。 这些非正式的围兜条目可能会违反某些会议的提交规则或适用于摄像头的版本规则。 我们引入Rebiber ,这是Python中的一个简单工具,可以自动修复它们。 它基于来自或的官方会议信息(适用于NLP会议)! 您可以在查看支持的会议列表。 您可以用作简单的网络演示。 安装 pip install rebiber -U 要么 git clone https://github.com/yuchenlin/rebiber.git cd rebiber/ pip in
1
使用深度学习进行环境声音分类 自主机器人是人工智能的一个领域,致力于设计可以执行任务的机器人,而无需任何外部来源的干预。 自主机器人将对我们在家庭,工业和公共场所的生活产生巨大影响。 这些机器人需要了解周围环境以表现出智能行为。 机器人感知周围环境的方式之一就是通过声音。 近年来,机器人的机械控制技术以可观的速度增长。 但是,他们通过听觉场景感知周围环境的能力仍处于起步阶段。 声音场景分类以多种方式补充了基于图像的分类,例如与有限的摄像机视角相比,麦克风本质上是全向的,并且音频信号需要较少的计算资源和较低的带宽。 装有麦克风的机器人可以通过分析来自声源的声音信号来以任何角度聆听并与人类互动,并且可以增强行为和辅助自主机器人的应用领域。 许多研究人员正在研究智能声音识别(ISR)系统,以使机器人能够了解真实的周围环境。 环境声音分类系统的目标是分析人类的听觉意识特征并将这种感知能力嵌入自主机
2022-10-12 21:41:25 218.98MB JupyterNotebook
1
机器学习 05.Advice for applying machine learning 编程作业 jupyter note版本 机器学习与数据挖掘 machine learning
2022-10-12 18:05:16 1.7MB 机器学习 评估学习算法
1
本文设计了一个自我监督的注意模块,该模块可以识别感兴趣的显着区域,而无需明确的手工标记注释。在现有的以CNNs为特征提取器的深度RL方法中,可以直接即插即用。 注意模块学习的是前景注意掩码,而不是预定义的关键点数量。
2022-10-12 17:06:59 7.33MB 自注意力
1