bishop 的经典之作,学机器学习的首先,贝叶斯观点来解读模型
2022-10-25 23:05:15 5.4MB pattern_recognition machine_learning
1
multidimensional particle swarm optimization for machine learning and pattern recognition
2022-10-25 23:02:29 18.48MB machine lear
1
This book covers the key ideas that link probability, statistics, and machine learning illustrated using Python modules in these areas. The entire text, including all the figures and numerical results, is reproducible using the Python codes and their associated Jupyter/IPython notebooks, which are provided as supplementary downloads. The author develops key intuitions in machine learning by working meaningful examples using multiple analytical methods and Python codes, thereby connecting theoretical concepts to concrete implementations. Modern Python modules like Pandas, Sympy, and Scikit-learn are applied to simulate and visualize important machine learning concepts like the bias/variance trade-off, cross-validation, and regularization. Many abstract mathematical ideas, such as convergence in probability theory, are developed and illustrated with numerical examples. This book is suitable for anyone with an undergraduate-level exposure to probability, statistics, or machine learning and with rudimentary knowledge of Python programming.
2022-10-25 17:27:32 7.17MB Python Probability Statistics Machine
1
榆木分类器在线词典学习 这是在线稀疏字典学习和时间金字塔匹配的官方Matlab实现[“李南宇,司玉娟,邓铎,袁春雨ECG通过在线稀疏字典和时间金字塔匹配进行分类”,在IEEE第17届国际通信技术大会上(ICCT)]可以从中下载 兼容性 该代码使用Windows 10和Matlab 2012进行了测试。 抽象的 最近,单词袋(BOW)算法提供了有效的功能并提高了ECG分类系统的准确性。 但是,BOW算法有两个缺点:(1)。 量化误差大,重建性能差。 (2)。 它会丢失心跳的时间信息,并可能为不同类型的心跳提供令人困惑的功能。 此外,ECG分类系统可用于对心血管患者进行长时间监视和分析,同时会产生大量数据,因此我们迫切需要一种有效的压缩算法。 鉴于上述问题,我们使用小波特征构造稀疏字典,从而将量化误差降至最低。 为了降低算法的复杂性并适应大规模的心跳操作,我们将在线词典学习与特征符号算法结合起来以更新词典和系数。 系数矩阵用于表示心电图搏动,大大减少了内存消耗,同时解决了定量误差的问题。 最后,我们构造金字塔以匹配每个ECG搏动的系数。 因此,我们通过时间随机池获得包含节拍时间信息的特征。
2022-10-24 19:07:50 155KB 系统开源
1
人工解析的自我校正 开箱即用的人类解析表示提取器。 在第三项LIP挑战中,我们的解决方案在所有人工解析轨道(包括单个,多个和视频)中排名第一! 特征: 开箱即用的人类解析提取器,可用于其他下游应用程序。 在三个流行的单人人类解析数据集上进行预训练的模型。 训练和伪造的代码。 对多人和视频人的解析任务的简单而有效的扩展。 要求 conda env create -f environment.yaml conda activate schp pip install -r requirements.txt 简单的开箱即用提取器 最简单的入门方法是在您自己的图像上使用我们训练有素的SCHP模型来提取人工解析表示形式。 在这里,我们在三个流行的数据集上提供了最新的。 这三个数据集具有不同的标签系统,您可以选择最适合自己任务的数据集。 LIP( ) 进行LIP验证的费用:59.36
1
本资源包含Pattern Recognition And Machine Learning的英文版和由马春鹏翻译的中文版。
2022-10-23 16:58:02 17.76MB 模式识别
1
个人学习——论文翻译同时+阅读
2022-10-23 09:07:32 1.11MB
1
matlab指纹图像分割代码很棒的深度学习 目录 免费在线书籍 通过Yoshua Bengio,Ian Goodfellow和Aaron Courville(05/07/2015) 由Michael Nielsen(2014年12月) 由Microsoft Research(2013) 蒙特利尔大学LISA实验室(2015年1月6日) 由Andrej Karpathy撰写:基于numpy的RNN / LSTM实现 课程 吴安德(Andrew Ng)在Coursera(2010-2014) 由Yaser Abu-Mostafa(2012-2014) 作者:汤姆·米切尔(Tom Mitchell)(2011年Spring) 由杰弗里·欣顿(Geoffrey Hinton)在Coursera(2012)中 舍布鲁克大学(Universitéde Sherbrooke)的雨果·拉罗谢尔(Hugo Larochelle)(2013) 通过CILVR实验室@纽约大学(2014) 丹·克莱恩(Dan Klein)和彼得阿比尔(Pieter Abbeel)(2013) 帕特里克·亨利·温斯顿(Patr
2022-10-22 22:13:45 20KB 系统开源
1
This book is written for two kinds of readers. The first type of reader is one who plans to study Deep Learning in a systematic approach for further research and development. This reader should read all the content from the beginning to end. The example code will be especially helpful for further understanding the concepts. A good deal of effort has been made to construct adequate examples and implement them. The code examples are constructed to be easy to read and understand. They are written in MATLAB for better legibility. There is no better programming language than MATLAB at being able to handle the matrices of Deep Learning in a simple and intuitive manner. The example code uses only basic functions and grammar, so that even those who are not familiar with MATLAB can easily understand the concepts. For those who are familiar with programming, the example code may be easier to understand than the text of this book. The other kind of reader is one who wants more in-depth information about Deep Learning than what can be obtained from magazines or newspapers, yet doesn’t want to study formally. These readers can skip the example code and briefly go over the explanations of the concepts. Such readers may especially want to skip the learning rules of the neural network.
2022-10-21 10:26:37 3.78MB matlab,DL
1