OpenNMT-py:开源神经机器翻译 OpenNMT-py是项目的版本, 项目是一个开源(MIT)神经机器翻译框架。 它被设计为易于研究的,可以尝试翻译,摘要,形态和许多其他领域的新思想。 一些公司已经证明该代码可以投入生产。 我们喜欢捐款! 请查看带有标签的问题。 提出问题之前,请确保您已阅读要求和文档示例。 除非有错误,否则请使用或提出问题。 公告-OpenNMT-py 2.0 我们很高兴宣布即将发布OpenNMT-py v2.0。 此版本背后的主要思想是-几乎完整地改造了数据加载管道。 引入了新的“动态”范式,允许对数据进行动态转换。 这具有一些优点,其中包括: 删除或
1
Breast Ultrasound Image Classification Based on Multiple-Instance Learning
2022-10-11 17:15:18 165KB 研究论文
1
Understanding Machine Learning - From Theory to Algorithms这本书的中文扫描版
2022-10-11 13:18:21 47.86MB machine lear theory to
1
Machine learning is becoming important in every discipline. It is used in engineering for autonomous cars. It is used in finance for predicting the stock market. Medical professionals use it for diagnoses. While many excellent packages are available from commercial sources and open-source repositories, it is valuable to understand how these algorithms work. Writing your own algorithms is valuable both because it gives you insight into the commercial and open-source packages and also because it gives you the background to write your own custom Machine Learning software specialized for your application. MATLAB® had its origins for that very reason. Scientists who needed to do operations on matrices used numerical software written in FORTRAN. At the time, using computer languages required the user to go through the write-compile-link-execute process that was time consuming and error prone. MATLAB presented the user with a scripting language that allowed the user to solve many problems with a few lines of a script that executed instantaneously. MATLAB has built-in visualization tools that helped the user better understand the results. Writing MATLAB was a lot more productive and fun than writing FORTRAN. The goal of MATLAB Machine Learning is to help all users harness the power of MATLAB to do a wide range of learning problems. This book has two parts. The first part, Chapters 1–3, provides background on machine learning including learning control that is not often associated with machine intelligence. We coin the term “autonomous learning” to embrace all of these disciplines. The second part of the book, Chapters 4–12, shows complete MATLAB machine learning applications. Chapters 4–6 introduce the MATLAB features that make it easy to implement machine learning. The remaining chapters give examples. Each chapter provides the technical background for the topic and ideas on how you can implement the learning algorithm. Each example is implemented in a MATLAB script supported by a number of MATLAB functions. The book has something for everyone interested in machine learning. It also has material that will allow people with interest in other technology areas to see how machine learning, and MATLAB, can help them solve problems in their areas of expertise.
2022-10-11 13:01:20 20.46MB matlab
1
Apress出版, 2019年的书。全英文。我还没看,无法发表意见。请自己到Amazon看介绍.
2022-10-11 11:38:19 13.9MB Matlab Machine Lear AI
1
简单遗传编程 对于符号回归 此Python 3代码是用于符号回归的遗传编程的简单实现,并且已出于教育目的而开发。 依存关系 numpy和sklearn 。 文件test.py显示了用法示例。 安装 您可以使用python3 -m pip install --user simplegp通过python3 -m pip install --user simplegp ,也可以通过下载代码并运行python3 setup.py install --user在本地进行python3 setup.py install --user 。 参考 如果您使用此代码,请通过引用(或为此)代码所针对的我们的一部或多部作品来支持我们的研究: M. Virgolin,A。De Lorenzo,E。Medvet,F。Randone。 “学习可解释性的公式以学习可解释的公式”。 ,施普林格(2020)。 ( )
1
医学成像中的深度学习:如何在MRI检查中自动检测膝盖受伤? 该存储库包含一个卷积神经网络的实现,该网络对MRI检查中特定的膝盖损伤进行分类。 它还包含我在上撰写的一系列帖子的材料。 数据集:MRNet 数据来自斯坦福大学ML Group研究实验室。 它由斯坦福大学医学中心进行的1,370次膝盖MRI检查,以研究前交叉韧带(ACL)眼泪的存在。 有关ACL撕裂问题和MRNet数据的更多信息,请参阅我的博客文章,您可以在Jupyter Notebook中调查数据并构建以下数据可视化: 要了解有关数据以及如何实现此可视化窗口小部件的更多信息,请阅读 代码结构: 下表总结了该项目的体系结构: 有关该代码的更多详细信息,请参阅我的第二篇。 如何使用代码: 如果您想自己重新训练网络,则必须通过此向斯坦福大学索取数据。 下载数据后,创建一个data文件夹并将其放置在项目的根目录下。 您
2022-10-10 15:30:20 11.29MB computer-vision deep-learning acl cnn
1
dm_env :DeepMind RL环境API 该软件包描述了用于Python强化学习(RL)环境的界面。 它由以下核心组件组成: dm_env.Environment :RL环境的抽象基类。 dm_env.TimeStep :一个容器类,表示每个时间步(过渡)上环境的输出。 dm_env.specs :一个模块,包含用于描述环境消耗的动作的格式以及其返回的观察值,奖励和折扣的原语。 dm_env.test_utils :用于测试具体环境实现是否符合dm_env.Environment接口的工具。 请参阅的文档以获取有关环境接口的语义以及如何使用它的更多信息。 子目录还包含使用dm_env接口实现的RL环境的说明性示例。 安装 dm_env可以使用pip从PyPI安装: pip install dm-env 请注意,从1.4版开始,我们仅支持Python 3.6+。 您还
1
吴恩达机器学习 jupyter note版本编程作业 线性回归 linear regression 机器学习与数据挖掘
2022-10-09 18:07:05 470KB 机器学习 linearregressio 线性回归
1
吴恩达机器学习 logistics regression jupyter note版本编程作业 机器学习与数据挖掘
2022-10-09 18:07:04 718KB 机器学习 逻辑回归 数据挖掘
1