深度学习中的不确定性量化 此回购包含文献调查和基线的实现,以用于深度学习中的预测不确定性估计。 文献调查 不确定性估算的基本背景 埃夫隆(B. Efron)和蒂布希拉尼(R. Tibshirani)。 “用于标准误差,置信区间和其他统计准确性度量的引导方法。” 统计科学,1986年。 R. Barber,EJ Candes,A。Ramdas和RJ Tibshirani。 “用折刀+进行预测性推论。” arXiv,2019年。 B.埃夫隆。 “ Jackknife-bootstrap之后的标准错误和影响功能。” 皇家统计学会杂志:B系列(方法论),1992年。 J.罗宾斯和A. Van Der Vaart。 “自适应非参数置信集。” 统计年鉴,2006年。 V. Vovk等人,“跨等角预测分布”。 JMLR,2018年。 M. H Quenouille。,“时间序列相关
1
深度神经网络计算库(clDNN) 停产的仓库 现在,该项目是Intel:registered:OpenVino:trade_mark:Toolkit分发的组成部分。 它的内容和开发已移至 。 要获取最新的clDNN来源,请参考DLDT回购。 深度神经网络计算库( clDNN )是用于深度学习(DL)应用程序的开源性能库,旨在加速英特尔:registered:处理器图形(包括HD图形和Iris:registered:图形)上的DL推理。 clDNN包括高度优化的构建块,用于使用C和C ++接口实现卷积神经网络(CNN)。 我们创建了这个项目,以使DL社区能够在Intel:registered:处理器上进行创新。 支持的用法:图像识别,图像检测和图像分割。 经验证的拓扑: AlexNet *,VG
1
使用PyTorch进行深度学习 该存储库包含由Manning Publications出版的Eli Stevens,Luca Antiga和Thomas Viehmann撰写的《用PyTorch进行深度学习》一书的代码。 该书的曼宁网站是: : 这本书也可以在亚马逊上购买: : (会员链接;根据规则:“作为亚马逊合作伙伴,我从有资格的购买中获得收入。”) 该书的勘误表可在配员网站上找到,或在 关于使用PyTorch进行深度学习 本书旨在为PyTorch提供深度学习的基础,并在实际项目中展示它们的实际作用。 我们努力提供深度学习的关键概念,并展示PyTorch如何将其交到从业者手中
2022-03-08 02:27:05 171.29MB python deep-neural-networks deep-learning python3
1
Google的deepmind团队发表在nature上有关alphago的论文,包含原有的英文版,我翻译的中文版,以及一个20分钟对alphago工作原理的讲述。
2022-03-01 08:28:24 31.32MB deepmind alphago
1
卫星图像深度学习:通过卫星和航空影像进行深度学习的资源
1
使用ConvNet的Twitter情绪分析 一个工具 预测推文的情绪“积极性” 如何使用它? >> from sentiment import sentiment_score >> print sentiment_score(u"I love you") 0.9999 它返回的情绪索引范围为0(负情绪)到1(正情绪)。 在线演示 预测单个推文的情绪“积极性” 概述的“积极性” 点击 算法 有关该算法的更多信息,请参阅。 技术选择 作为Web框架 作为神经网络训练的实现 作为神经网络分类(在线版本)的实现 训练技巧 扇入,扇出初始化 退出 阿达达 贡献者 韩晓和姚璐
1
LeNet-5 这实现了略微修改的LeNet-5 [LeCun et al。,1998a],并在上达到了约99%的准确度。 设置 使用以下命令安装所有依赖项 $ pip install -r requirements.txt 用法 启动visdom服务器进行可视化 $ python -m visdom.server 开始训练程序 $ python run.py 请参阅时期火车损耗实时图表。 经过训练的模型将作为ONNX导出到lenet.onnx 。 可以使用查看lenet.onnx文件 参考 [ ] Y. LeCun,L。Bottou,Y。Bengio和P. Haffner。 “基于梯度的学习应用于文档识别。” IEEE会议论文集,86(11):2278-2324,1998年11月。
1
深度学习4J 该存储库不再维护。 我建议您检出存储库:( ),但是该存储库中列出的示例仍然可以使用。 如果遇到任何错误,请确保将DL4j版本更改为最新版本。 如果仍然出现,请随时在此处发布问题。 一个Java深度学习存储库,其中包含从头开始的基于DL4J的项目。 到目前为止包括的项目: 使用标准前馈网络预测客户损失 使用CNN进行动物分类 使用Java进行超参数调整 桑坦德价值预测Kaggle挑战 无论是否使用GPU,请确保根据您的方便切换pom.xml更改。 1.使用标准前馈网络预测客户损失 给定已定义的n个标签,获取客户离开银行的概率。 问题陈述来自超级数据科学团队的课程。 他们讨论了使用Keras实现的解决方案,而这是尝试使用Java来实现的解决方案。 DLJ4模型始终如一地提供85.5%的准确度,比Keras模型的83%的准确度要好。 文件链接: : 代码执行: 2.
1
集成相似度的神经网络预测药物相互作用 由于此问题在经济,工业和健康中非常重要,因此提出一种合适的计算方法来高精度预测未知DDI极具挑战性。 我们提出了一种新颖的机器学习方法,它使用两层完全连接的神经网络来预测未知的DDI,称为“ NDD”。 NDD使用药物的各种特性来获得全面的信息。 计算多个药物相似性。 NDD将多种药物相似性与称为“ SNF”的非线性相似性融合方法相结合,以实现高级功能。 论文链接: : 依赖关系: python版本3.5.3 keras库 scikit学习 代码和数据 在NDD文件夹上找到DS1-Ds3。 NDD的功能代码位于NDD文件夹中。 接触 如有任何疑问,请随时与我联系: 电子邮件: 如果您认为本研究有帮助,请引用我们。
1
田春伟,徐永,李作勇,左望萌,费伦和刘宏的Atent-guided CNN for图像降噪(ADNet)由神经网络(IF:5.535)于2020年发布( ),并由Pytorch实现。 这篇论文被推到了Nueral Networks的主页上。 此外,微信公众号还在和 。 本文是第一篇通过深度网络属性解决复杂背景图像降噪的论文。 抽象 深度卷积神经网络(CNN)在低级计算机视觉中引起了相当大的兴趣。 研究通常致力于通过非常深的CNN来提高性能。 但是,随着深度的增加,浅层对深层的影响会减弱。 受这一事实的启发,我们提出了一种注意力导向的去噪卷积神经网络(ADNet),主要包括稀疏块(SB),特征增强块(FEB),注意块(AB)和重构块(RB)图像降噪。 具体而言,SB通过使用膨胀的和普通的卷积来去除噪声,从而在性能和效率之间进行权衡。 FEB通过很长的路途整合了全球和局部特征信息,以增强去噪
1