注意就是您所需要的:Pytorch实现 这是“”中的变压器模型的PyTorch实现(Ashish Vaswani,Noam Shazeer,Niki Parmar,Jakob Uszkoreit,Llion Jones,Aidan N.Gomez,Lukasz Kaiser,Illia Polosukhin,arxiv,2017年)。 一种新颖的序列到序列框架利用自我注意机制,而不是卷积运算或递归结构,在WMT 2014英德翻译任务上实现了最先进的表现。 (2017/06/12) 官方Tensorflow实现可在以下位置找到: 。 要了解有关自我注意机制的更多信息,您可以阅读“”。 该项目现在支持使用训练有素的模型进行培训和翻译。 请注意,该项目仍在进行中。 BPE相关部件尚未经过全面测试。 如果有任何建议或错误,请随时提出问题以通知我。 :) 需求 python 3.4+ pytorch 1.3.1 火炬文字0.4.0 Spacy 2.2.2+ tqdm 莳萝 麻木 用法 WMT'16多式联运翻译:de-en WMT'16多模式翻译任务的培训示例( )。
1
text2sql-data 该存储库包含用于构建和评估将句子映射到SQL的系统的数据和代码,这些数据和代码是作为以下部分开发的: ,Catherine Finegan-Dollak,Jonathan K.Kummerfeld,Li Zhang,Karthik Ramanathan,Sesh Sadasivam,Rui Zhang和Dragomir Radev,ACL 2018 对于一系列领域,我们提供: 带注释变量的句子 SQL查询 数据库模式 数据库 这些是先前数据集和我们开发的新数据集的改进形式。 我们有单独的文件描述,和。 版 描述 4 数据修复 3 Spider和WikiSQL的数据修复和数据添加 2 修正了错误定义的变量的数据 1个 ACL 2018论文中使用的数据 引用这项工作 如果您在工作中使用此数据,请引用我们的ACL文件和适当的原始来源,并列出数据的版本号。 例如,在您的论文中,您可以编写(使用下面的BibTeX): In this work, we use version 4 of the modified SQL datasets from \c
2021-09-22 14:40:59 31.02MB nlp natural-language-processing sql database
1
关系提取中的位置感知注意力RNN模型 此存储库包含PyTorch代码,用于纸上的。 TACRED数据集:有关TAC关系提取数据集的详细信息可以在上找到。 要求 Python 3(在3.6.2上测试) PyTorch(在1.0.0上测试) 解压缩,wget(仅用于下载) 制备 首先,从斯坦福大学网站下载和解压缩GloVe载体,方法如下: chmod +x download.sh; ./download.sh 然后使用以下方法准备词汇和初始单词向量: python prepare_vocab.py dataset/tacred dataset/vocab --glove_dir data
1
对NER的监管不力 与ACL 2020接受的论文“没有标签数据的命名实体识别:弱监督方法”相关的源代码。 要求: 您首先应该确保安装以下Python软件包: spacy (版本> = 2.2) hmmlearn snips-nlu-parsers pandas numba scikit-learn 您还应该在Spacy中安装en_core_web_sm和en_core_web_md模型。 要在ner.py运行神经模型,还需要安装pytorch , cupy , keras和tensorflow 。 要运行基线,您还需要安装snorkel 。 最后,您还需要下载以下文件并将
1
文件2 动机 给定两个具有相同行数的文件, files2rouge计算每个序列(=行)的平均ROUGE得分。 每个序列可以包含多个句子。 在这种情况下,必须使用--eos标志(默认值:“。”)传递句子字符串的结尾。 使用错误的eos分隔符运行files2rouge可能会导致ROUGE-L得分不正确。 您可能还对Python实现(而不是包装器)感兴趣: : 。 $ files2rouge --help usage: files2rouge [-h] [-v] [-a ARGS] [-s SAVETO] [-e EOS] [-m] [-i] refer
1
Natural Language Processing
2021-08-14 14:17:59 4KB NLP,Natural Language Processing
1
mindspore-nlp-教程 mindspore-nlp-tutorial是针对谁正在使用MindSpore研究NLP(自然语言处理)的教程。 该存储库是从迁移的。 NLP中的大多数模型都是从Pytorch版本迁移而来的,少于100行代码(注释或空白行除外) 注意:所有模型均在GPU版本中实现,但未在Ascend平台上进行测试。 课程-(示例用途) 1.基本嵌入模型 1-1。 -预测下一个单词论文- 1-2。 -嵌入单词和显示图 论文- 2. CNN(卷积神经网络) 2-1。 二进制情感分类 论文- 3. RNN(递归神经网络) 3-1。 预测下一步论文- 3-2。 自动完成论文-长期记忆(1997) 3-3。 Bi-LSTM-预测长句中的下一个单词 4.注意机制 4-1。 Seq2Seq-更改单词 论文-使用RNN编码器-用于统计机器翻译的解码器来学习短语表示(
1
ABSA-PyTorch 基于方面的情感分析,PyTorch实现。 基于方面的情感分析,使用PyTorch实现。 需求 火炬> = 0.4.0 numpy的> = 1.13.3 斯克莱恩 python 3.6 / 3.7 变形金刚 要安装需求,请运行pip install -r requirements.txt 。 对于非基于BERT的模型,需要,请参阅了解更多详细信息。 用法 训练 python train.py --model_name bert_spc --dataset restaurant 所有实现的模型都列在。 有关更多训练参数,请参见 。 请参阅以获取k倍交叉验证支持。 推理 有关基于非BERT的模型和基于BERT的模型,请参考 。 提示 对于非基于BERT的模型,训练过程不是很稳定。 基于BERT的模型对小数据集上的超参数(尤其是学习率)更敏感,请参阅。 为了释放BERT的真正功能,必须对特定任务进行微调。 评论/调查 邱锡鹏等。 “自然语言处理的预训练模型:调查。” arXiv预印本arXiv:2003.08271(2020)。 张磊,王帅和刘
1
HanLP: Han Language Processing | | | | | 面向生产环境的多语种自然语言处理工具包,基于PyTorch和TensorFlow 2.x双引擎,目标是普及落地最前沿的NLP技术。HanLP具备功能完善、性能高效、架构清晰、语料时新、可自定义的特点。 借助世界上最大的多语种语料库,HanLP2.1支持包括简繁中英日俄法德在内的104种语言上的10种联合任务:分词(粗分、细分2个标准,强制、合并、校正3种)、词性标注(PKU、863、CTB、UD四套词性规范)、命名实体识别(PKU、MSRA、OntoNotes三套规范)、依存句法分析(SD、UD规范)、成分句法分析、语义依存分析(SemEval16、DM、PAS、PSD四套规范)、语义角色标注、词干提取、词法语法特征提取、抽象意义表示(AMR)。 量体裁衣,HanLP提供RESTful和nati
1
BERT的最好的朋友。 安装 Ernie需要Python 3.6或更高版本。 pip install ernie 微调 句子分类 from ernie import SentenceClassifier , Models import pandas as pd tuples = [( "This is a positive example. I'm very happy today." , 1 ), ( "This is a negative sentence. Everything was wrong today at work." , 0 )] df = pd . D
2021-05-28 15:48:32 201KB nlp natural-language-processing tensorflow keras
1