[{"title":"( 44 个子文件 1.7MB ) ABSA-PyTorch:基于方面的情感分析,PyTorch实现。基于方面的情感分析,使用PyTorch实现-源码","children":[{"title":"ABSA-PyTorch-master","children":[{"title":"models","children":[{"title":"td_lstm.py <span style='color:#111;'> 1.07KB </span>","children":null,"spread":false},{"title":"cabasc.py <span style='color:#111;'> 5.94KB </span>","children":null,"spread":false},{"title":"lcf_bert.py <span style='color:#111;'> 5.31KB </span>","children":null,"spread":false},{"title":"aen.py <span style='color:#111;'> 5.20KB </span>","children":null,"spread":false},{"title":"ram.py <span style='color:#111;'> 3.39KB </span>","children":null,"spread":false},{"title":"mgan.py <span style='color:#111;'> 5.22KB </span>","children":null,"spread":false},{"title":"atae_lstm.py <span style='color:#111;'> 1.64KB </span>","children":null,"spread":false},{"title":"tc_lstm.py <span style='color:#111;'> 1.74KB </span>","children":null,"spread":false},{"title":"tnet_lf.py <span style='color:#111;'> 3.13KB </span>","children":null,"spread":false},{"title":"asgcn.py <span style='color:#111;'> 4.35KB </span>","children":null,"spread":false},{"title":"memnet.py <span style='color:#111;'> 2.33KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 549B </span>","children":null,"spread":false},{"title":"aoa.py <span style='color:#111;'> 2.06KB </span>","children":null,"spread":false},{"title":"bert_spc.py <span style='color:#111;'> 715B </span>","children":null,"spread":false},{"title":"ian.py <span style='color:#111;'> 2.12KB </span>","children":null,"spread":false},{"title":"lstm.py <span style='color:#111;'> 839B </span>","children":null,"spread":false}],"spread":false},{"title":"infer_example.py <span style='color:#111;'> 7.15KB </span>","children":null,"spread":false},{"title":"LICENCE <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 13.20KB </span>","children":null,"spread":false},{"title":"layers","children":[{"title":"squeeze_embedding.py <span style='color:#111;'> 1.18KB </span>","children":null,"spread":false},{"title":"dynamic_rnn.py <span style='color:#111;'> 3.84KB </span>","children":null,"spread":false},{"title":"attention.py <span style='color:#111;'> 4.49KB </span>","children":null,"spread":false},{"title":"point_wise_feed_forward.py <span style='color:#111;'> 841B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 130B </span>","children":null,"spread":false}],"spread":true},{"title":"requirements.txt <span style='color:#111;'> 62B </span>","children":null,"spread":false},{"title":"train_k_fold_cross_val.py <span style='color:#111;'> 13.94KB </span>","children":null,"spread":false},{"title":"data_utils.py <span style='color:#111;'> 7.53KB </span>","children":null,"spread":false},{"title":".all-contributorsrc <span style='color:#111;'> 2.17KB </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 397B </span>","children":null,"spread":false},{"title":"dependency_graph.py <span style='color:#111;'> 1.83KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 9.80KB </span>","children":null,"spread":false},{"title":"datasets","children":[{"title":"semeval14","children":[{"title":"Restaurants_Test_Gold.xml.seg <span style='color:#111;'> 113.10KB </span>","children":null,"spread":false},{"title":"Restaurants_Test_Gold.xml.seg.graph <span style='color:#111;'> 2.00MB </span>","children":null,"spread":false},{"title":"Laptops_Train.xml.seg <span style='color:#111;'> 265.23KB </span>","children":null,"spread":false},{"title":"Laptops_Test_Gold.xml.seg <span style='color:#111;'> 60.40KB </span>","children":null,"spread":false},{"title":"Restaurants_Train.xml.seg.graph <span style='color:#111;'> 7.23MB </span>","children":null,"spread":false},{"title":"Restaurants_Train.xml.seg <span style='color:#111;'> 377.58KB </span>","children":null,"spread":false},{"title":"Laptops_Test_Gold.xml.seg.graph <span style='color:#111;'> 1.15MB </span>","children":null,"spread":false},{"title":"Laptops_Train.xml.seg.graph <span style='color:#111;'> 5.73MB </span>","children":null,"spread":false}],"spread":true},{"title":"acl-14-short-data","children":[{"title":"test.raw.graph <span style='color:#111;'> 1.32MB </span>","children":null,"spread":false},{"title":"test.raw <span style='color:#111;'> 72.91KB </span>","children":null,"spread":false},{"title":"train.raw <span style='color:#111;'> 652.92KB </span>","children":null,"spread":false},{"title":"train.raw.graph <span style='color:#111;'> 11.70MB </span>","children":null,"spread":false},{"title":"readme.txt <span style='color:#111;'> 1.22KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}],"spread":false}],"spread":true}]