ABSA-PyTorch:基于方面的情感分析,PyTorch实现。基于方面的情感分析,使用PyTorch实现-源码

上传者: 42099302 | 上传时间: 2021-07-20 13:10:29 | 文件大小: 1.7MB | 文件类型: ZIP
ABSA-PyTorch 基于方面的情感分析,PyTorch实现。 基于方面的情感分析,使用PyTorch实现。 需求 火炬> = 0.4.0 numpy的> = 1.13.3 斯克莱恩 python 3.6 / 3.7 变形金刚 要安装需求,请运行pip install -r requirements.txt 。 对于非基于BERT的模型,需要,请参阅了解更多详细信息。 用法 训练 python train.py --model_name bert_spc --dataset restaurant 所有实现的模型都列在。 有关更多训练参数,请参见 。 请参阅以获取k倍交叉验证支持。 推理 有关基于非BERT的模型和基于BERT的模型,请参考 。 提示 对于非基于BERT的模型,训练过程不是很稳定。 基于BERT的模型对小数据集上的超参数(尤其是学习率)更敏感,请参阅。 为了释放BERT的真正功能,必须对特定任务进行微调。 评论/调查 邱锡鹏等。 “自然语言处理的预训练模型:调查。” arXiv预印本arXiv:2003.08271(2020)。 张磊,王帅和刘

文件下载

资源详情

[{"title":"( 44 个子文件 1.7MB ) ABSA-PyTorch:基于方面的情感分析,PyTorch实现。基于方面的情感分析,使用PyTorch实现-源码","children":[{"title":"ABSA-PyTorch-master","children":[{"title":"models","children":[{"title":"td_lstm.py <span style='color:#111;'> 1.07KB </span>","children":null,"spread":false},{"title":"cabasc.py <span style='color:#111;'> 5.94KB </span>","children":null,"spread":false},{"title":"lcf_bert.py <span style='color:#111;'> 5.31KB </span>","children":null,"spread":false},{"title":"aen.py <span style='color:#111;'> 5.20KB </span>","children":null,"spread":false},{"title":"ram.py <span style='color:#111;'> 3.39KB </span>","children":null,"spread":false},{"title":"mgan.py <span style='color:#111;'> 5.22KB </span>","children":null,"spread":false},{"title":"atae_lstm.py <span style='color:#111;'> 1.64KB </span>","children":null,"spread":false},{"title":"tc_lstm.py <span style='color:#111;'> 1.74KB </span>","children":null,"spread":false},{"title":"tnet_lf.py <span style='color:#111;'> 3.13KB </span>","children":null,"spread":false},{"title":"asgcn.py <span style='color:#111;'> 4.35KB </span>","children":null,"spread":false},{"title":"memnet.py <span style='color:#111;'> 2.33KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 549B </span>","children":null,"spread":false},{"title":"aoa.py <span style='color:#111;'> 2.06KB </span>","children":null,"spread":false},{"title":"bert_spc.py <span style='color:#111;'> 715B </span>","children":null,"spread":false},{"title":"ian.py <span style='color:#111;'> 2.12KB </span>","children":null,"spread":false},{"title":"lstm.py <span style='color:#111;'> 839B </span>","children":null,"spread":false}],"spread":false},{"title":"infer_example.py <span style='color:#111;'> 7.15KB </span>","children":null,"spread":false},{"title":"LICENCE <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 13.20KB </span>","children":null,"spread":false},{"title":"layers","children":[{"title":"squeeze_embedding.py <span style='color:#111;'> 1.18KB </span>","children":null,"spread":false},{"title":"dynamic_rnn.py <span style='color:#111;'> 3.84KB </span>","children":null,"spread":false},{"title":"attention.py <span style='color:#111;'> 4.49KB </span>","children":null,"spread":false},{"title":"point_wise_feed_forward.py <span style='color:#111;'> 841B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 130B </span>","children":null,"spread":false}],"spread":true},{"title":"requirements.txt <span style='color:#111;'> 62B </span>","children":null,"spread":false},{"title":"train_k_fold_cross_val.py <span style='color:#111;'> 13.94KB </span>","children":null,"spread":false},{"title":"data_utils.py <span style='color:#111;'> 7.53KB </span>","children":null,"spread":false},{"title":".all-contributorsrc <span style='color:#111;'> 2.17KB </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 397B </span>","children":null,"spread":false},{"title":"dependency_graph.py <span style='color:#111;'> 1.83KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 9.80KB </span>","children":null,"spread":false},{"title":"datasets","children":[{"title":"semeval14","children":[{"title":"Restaurants_Test_Gold.xml.seg <span style='color:#111;'> 113.10KB </span>","children":null,"spread":false},{"title":"Restaurants_Test_Gold.xml.seg.graph <span style='color:#111;'> 2.00MB </span>","children":null,"spread":false},{"title":"Laptops_Train.xml.seg <span style='color:#111;'> 265.23KB </span>","children":null,"spread":false},{"title":"Laptops_Test_Gold.xml.seg <span style='color:#111;'> 60.40KB </span>","children":null,"spread":false},{"title":"Restaurants_Train.xml.seg.graph <span style='color:#111;'> 7.23MB </span>","children":null,"spread":false},{"title":"Restaurants_Train.xml.seg <span style='color:#111;'> 377.58KB </span>","children":null,"spread":false},{"title":"Laptops_Test_Gold.xml.seg.graph <span style='color:#111;'> 1.15MB </span>","children":null,"spread":false},{"title":"Laptops_Train.xml.seg.graph <span style='color:#111;'> 5.73MB </span>","children":null,"spread":false}],"spread":true},{"title":"acl-14-short-data","children":[{"title":"test.raw.graph <span style='color:#111;'> 1.32MB </span>","children":null,"spread":false},{"title":"test.raw <span style='color:#111;'> 72.91KB </span>","children":null,"spread":false},{"title":"train.raw <span style='color:#111;'> 652.92KB </span>","children":null,"spread":false},{"title":"train.raw.graph <span style='color:#111;'> 11.70MB </span>","children":null,"spread":false},{"title":"readme.txt <span style='color:#111;'> 1.22KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}],"spread":false}],"spread":true}]

评论信息

  • weixin_54274961 :
    用户下载后在一定时间内未进行评价,系统默认好评。
    2021-08-10

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明