机器学习无疑是当前数据分析领域的一个热点内容。很多人在平时的工作中都或多或少会用到机器学习的算法。这里我们将为您总结一下常见的机器学习算法,以供您在工作和学习中参考。机器学习的算法很多。很多时候困惑人们都是,很多算法是一类算法,而有些算法又是从其他算法中延伸出来的。这里,我们从两个方面来给大家介绍,第一个方面是学习的方式,第二个方面是算法的类似性。根据数据类型的不同,对一个问题的建模有不同的方式。在机器学习或者人工智能领域,人们首先会考虑算法的学习方式。在机器学习领域,有几种主要的学习方式。将算法按照学习方式分类是一个不错的想法,这样可以让人们在建模和算法选择的时候考虑能根据输入数据来选择最合
1
探索性数据分析/ 支持向量机/ word2vec/ 贝叶斯-拼写检查器.zip 贝叶斯-新闻分类.zip 贝叶斯Python文本分析.zip 降维算法.zip 聚类算法.zip 决策树.zip 科比数据集分析.zip 逻辑回归-信用卡欺诈检测.zip 神经网络.zip 数据预处理.zip 梯度下降求解逻辑回归.zip 推荐系统.zip 支持向量机.zip GMM聚类.zip Python时间序列.zip Xgboost调参.zip
2023-03-14 08:54:49 429.98MB 深度学习 支持向量机 时间序列 神经网络
1
GWO优化LSTM分类,这个代码分了两类。
2023-03-12 01:10:56 19.24MB 机器学习 算法 GWO LSTM
1
资源内包含新冠肺炎的原始数据,测试集、训练集等,以及进行数据可视化分析及算法预测分析的源码文件(ipynb格式) 这份分析代码主要分为以下几个部分: - 全球趋势分析 - 国家(地区)增长 - 省份情况 - 放大美国:现在美国正在发生什么? - 欧洲 - 亚洲 - 现在哪个国家正在复苏? - 什么时候会收敛?通过S型拟合进行预测
2023-03-07 17:15:55 6.45MB 新冠疫情 可视化 预测
1
matlab信息熵代码 机器学习算法Python实现 目录 一、 1、代价函数 其中: 下面就是要求出theta,使代价最小,即代表我们拟合出来的方程距离真实值最近 共有m条数据,其中代表我们要拟合出来的方程到真实值距离的平方,平方的原因是因为可能有负值,正负可能会抵消 前面有系数2的原因是下面求梯度是对每个变量求偏导,2可以消去 实现代码: # 计算代价函数 def computerCost(X,y,theta): m = len(y) J = 0 J = (np.transpose(X*theta-y))*(X*theta-y)/(2*m) #计算代价J return J 注意这里的X是真实数据前加了一列1,因为有theta(0) 2、梯度下降算法 代价函数对求偏导得到: 所以对theta的更新可以写为: 其中为学习速率,控制梯度下降的速度,一般取0.01,0.03,0.1,0.3..... 为什么梯度下降可以逐步减小代价函数 假设函数f(x) 泰勒展开:f(x+△x)=f(x)+f'(x)*△x+o(△x) 令:△x=-α*f'(x) ,即负梯度方向乘以一个很小的步长α 将△x代
2023-02-11 14:11:56 34.1MB 系统开源
1
注:以前学习flask框架时老师期末留的大作业。想要学习flask框架的可以用来学习学习常用的知识点。本次大作业的内容如下:实现一个机器学习算法演示网站,要求网站使用flask-bootstrap模板,能够同时在手机和计算机上良好地显示页面(即响应式页面) 2.1 注册和登录功能,要求使用数据库,并且计算密码散列值 2.2 登录成功后,显示算法演示主页面 2.2.1 主页面先显示三种鸢尾花的图片(图片自己上网搜索) 2.2.2 再下一行显示带链接机器学习算法:线性回归算法、决策树算法、支持向量机算法、朴素贝叶斯算法、KNN聚类算法 2.2.3 点击文字可以跳转到相应的演示页面 2.3 单个算法演示页面,包括但不限于如下功能 2.3.1 用flash函数显示文字:服务端正在使用某某算法进行鸢尾花分类计算,此时服务端程序即时运行相应的机器学习算法 2.3.2 然后显示算法名称和运行算法程序得到的训练得分 2.3.3 下面再显示一张图片,图片是算法的文字描述和相应的公式 2.3.4 下面一行显示带链接的文字:返回主页,点击则返回演示主页面 实现了flask框架与机器学习相结合,在页面中显示。
2023-02-10 13:45:45 2.43MB flask pythonweb 后端 python
1
前言人工智能的三次浪潮2018年年初,招聘季正如火如荼地进行,而“数据科学家”和“算法工程师”绝对算得上热门职业。“人工智能”“机器学习”“深度学习”“建模”“
2023-02-07 22:01:06 25.17MB
1
em算法简介及代码。EM算法是机器学习中一个很重要的算法,即期望最大化算法,主要包括以下两个步骤: E步骤:estimate the expected values M步骤:re-estimate parameters 迭代使用EM步骤,直至收敛。
2022-12-27 17:59:19 473KB em算法简介及代码
1
高级项目 我研究了使用不同的机器学习算法和python来预测英超联赛足球比赛的结果。 这是我高三毕业时作为Goucher大学计算机科学专业的Capstone项目。 我使用whoscored.com的数据,创建了用于预测游戏效果的大多数指标。 我表现最好的算法是Logistic回归模型和Random Forest Regressor(它们的精确度为68%)。 考虑到我只有357个数据点(仅包括108个验证测试集数据点),这给人留下了深刻的印象! 文件: MyCapstone.ipynb: 该文件是一个jupyter笔记本,其中包含我在数据处理,数据分析和机器学习建模中使用的所有代码。 Table4.csv 这是一个csv文件,其中包含基于whoscored.com数据的数据,我已对其进行处理并将其用于执行预测。
2022-12-22 22:34:04 64KB JupyterNotebook
1
为了维系优质客户与企业之间良好的合作关系,实现企业盈利的最大化,构建基于机器学习算法的优质客户识别模型。在电力客户管理数据库中采集待识别的客户信息,并统一客户信息的格式。分别从信用度、合作时间以及资金运转能力等方面,设置优质客户判断标准。利用机器学习算法,得出客户的价值评估结果,并按照权重值分别与设置的判断标准做匹配,从而得出优质客户的识别结果。为了验证识别模型的应用效果设计实验,并得出实验结论:应用优质客户识别模型后,电力企业的总盈利额提高了3.69%。
1