从0开始搭建vue + flask 旅游景点数据分析系统 【数据库SQL文件】 教程页面:https://blog.csdn.net/roccreed/article/details/140734085
2024-12-02 15:22:44 3.72MB flask vue.js sql
1
【项目资源】: 包含前端、后端、移动开发、操作系统、人工智能、物联网、信息化管理、数据库、硬件开发、大数据、课程资源、音视频、网站开发等各种技术项目的源码。 包括STM32、ESP8266、PHP、QT、Linux、iOS、C++、Java、python、web、C#、EDA、proteus、RTOS等项目的源码。 【项目质量】: 所有源码都经过严格测试,可以直接运行。 功能在确认正常工作后才上传。 【适用人群】: 适用于希望学习不同技术领域的小白或进阶学习者。 可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】: 项目具有较高的学习借鉴价值,也可直接拿来修改复刻。 对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】: 有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 鼓励下载和使用,并欢迎大家互相学习,共同进步。 # 注意 1. 本资源仅用于开源学习和技术交流。不可商用等,一切后果由使用者承担。 2. 部分字体以及插图等来自网络,若是侵权请联系删除。
2024-11-22 18:29:20 5.72MB 语音识别 android flask
1
基于Python的电影推荐系统是一个应用广泛的项目,旨在通过推荐算法为用户提供个性化的电影推荐。该项目免费提供全部源码,适用于学习推荐系统和数据科学技术的学生和开发者。 项目介绍 该电影推荐系统项目利用Python编程语言和常见的推荐算法,包括协同过滤、基于内容的推荐和混合推荐等,帮助用户找到他们可能喜欢的电影。通过处理用户的评分数据和电影特征,该系统能够有效地提供个性化推荐。 功能特点 数据处理:使用Pandas库进行数据清洗和预处理,确保数据质量和一致性。 推荐算法: 协同过滤:基于用户和物品的协同过滤算法,推荐相似用户喜欢的电影。 基于内容:利用电影的特征(如类型、导演、演员)进行内容匹配和推荐。 混合推荐:结合多种推荐算法,提高推荐准确性和多样性。 用户界面:通过简单的命令行界面或Web界面(使用Flask等框架)与用户交互,展示推荐结果。 性能优化:通过矩阵分解和高效的数据处理技术,提高系统的性能和推荐速度。
2024-11-21 21:09:45 24.71MB python flask
1
【项目资源】: 包含前端、后端、移动开发、操作系统、人工智能、物联网、信息化管理、数据库、硬件开发、大数据、课程资源、音视频、网站开发等各种技术项目的源码。 包括STM32、ESP8266、PHP、QT、Linux、iOS、C++、Java、python、web、C#、EDA、proteus、RTOS等项目的源码。 【项目质量】: 所有源码都经过严格测试,可以直接运行。 功能在确认正常工作后才上传。 【适用人群】: 适用于希望学习不同技术领域的小白或进阶学习者。 可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】: 项目具有较高的学习借鉴价值,也可直接拿来修改复刻。 对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】: 有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 鼓励下载和使用,并欢迎大家互相学习,共同进步。
2024-11-02 22:39:40 9.68MB 毕业设计 课程设计 项目开发 资源资料
1
在本项目中,我们将探讨如何使用Python的Flask框架与Bootstrap 5库共同构建一个基于浏览器的学生信息管理系统。这个系统可以高效地管理学生数据,提供友好的用户界面,并且易于扩展和维护。以下是对相关知识点的详细介绍: 1. **Python Flask**: Flask是一个轻量级的Web服务器网关接口(WSGI)Web应用框架。它简洁而灵活的设计使其成为初学者和高级开发者构建小型到中型Web应用的理想选择。Flask提供了基础的路由、模板渲染、HTTP请求处理等功能,允许开发者用Python代码构建Web应用。 2. **Bootstrap 5**: Bootstrap是Twitter开源的一个用于前端开发的快速响应框架,用于构建移动设备优先的Web页面。Bootstrap 5是最新的版本,它包含了丰富的CSS和JavaScript组件,如网格系统、导航栏、表单、按钮、模态框等,极大地简化了网页设计。此外,Bootstrap 5还支持暗黑模式和更强大的自定义选项。 3. **数据库集成**: 在学生信息管理系统中,通常会使用SQLite、MySQL或PostgreSQL等数据库来存储和检索学生数据。Flask通过其扩展如Flask-SQLAlchemy或Flask-PyMongo提供数据库接口。我们将学习如何创建数据模型,定义数据库表结构,以及如何进行CRUD(创建、读取、更新、删除)操作。 4. **路由和视图**: 路由是Flask中的核心概念,它将URL映射到特定的函数(视图)。视图负责处理请求并返回响应,可能是一个HTML页面、JSON数据或其他内容。在学生信息管理系统中,我们需要定义不同的路由来处理学生列表、添加学生、编辑学生信息等操作。 5. **模板引擎**: Flask使用Jinja2作为默认的模板引擎,它允许我们编写动态HTML页面。在项目中,我们将创建模板文件来展示学生信息,比如表格布局,以及用于添加、编辑和删除学生的表单。 6. **表单处理**: Flask-WTF扩展可以帮助我们轻松处理HTML表单,包括验证用户输入和将表单数据转化为Python对象。在系统中,我们将创建表单类来定义学生信息字段,并使用它们在模板中渲染表单。 7. **用户认证和授权**: 对于复杂的学生信息管理系统,可能需要用户登录和权限控制。Flask-Login和Flask-Principal等扩展可以用来实现这一功能,确保只有授权用户才能访问或修改学生数据。 8. **错误处理和日志记录**: 为了提高系统的健壮性,我们需要处理可能出现的错误,并记录操作日志。Flask提供了基本的错误处理机制,我们可以通过自定义错误处理函数来定制错误页面。同时,通过Python内置的logging模块,可以方便地记录应用程序的运行状态。 9. **部署与测试**: 完成开发后,我们需要将应用部署到Web服务器上,例如使用Gunicorn或uWSGI + Nginx。此外,单元测试和集成测试是确保代码质量的重要步骤,我们可以使用unittest或pytest等测试框架对系统功能进行验证。 通过以上知识点的学习和实践,你将能够构建一个功能完备、用户体验良好的学生信息管理系统,不仅适用于教学环境,也可以作为其他类型信息管理系统的蓝本。在整个过程中,不断优化代码结构,遵循最佳实践,将有助于提升你的Python和Web开发技能。
2024-09-29 21:13:05 43KB flask python
1
博文“基于flask+opencv+sklearn+tensorflow的人脸识别系统”对应的源代码,其中包括前端源代码和后端源代码。
2024-07-31 20:04:46 100KB flask opencv tensorflow tensorflow
1
数据科学 项目1:足球运动员的评分( ) 使用来自欧洲足球数据库的数据并建立了回归模型,以基于各种属性预测足球运动员的整体评分。 使用Flask构建了基本的API,并将其部署到GCP,Herolu和Pivotal云平台中。 项目2:预测一个人每年的收入是否超过5万( ) 建立了几个分类模型,以预测一个人每年从经典成人数据集中赚取的收入是否超过5万。 建立了KNN,决策树,随机森林和XGBoost模型,并通过比较各自的AUC和准确性得分,比较了哪一种最适合数据集。 项目3:Zomato_EDA( ) 是否在Zomato印度餐厅数据集上进行了广泛的EDA分析。 zomato探索性数据分析旨在为美食家找到最佳的餐馆,并在他们所在的地区物有所值。 它还有助于在当地找到所需的美食。
2024-07-26 12:10:55 7.86MB python flask jupyter-notebook JupyterNotebook
1
【标题】"基于Flask框架的智能租房系统"是一个利用Python的Flask微框架构建的Web应用程序,旨在为用户提供一个方便、智能的在线租房服务。这个系统可能包含了房源信息展示、用户注册与登录、房源搜索等功能,通过智能化的推荐算法,帮助用户找到合适的租赁房源。 【描述】"源码,不含sql文件"表明该压缩包提供的内容是程序的源代码,但不包括数据库的SQL文件。这意味着在运行此系统前,你需要自行准备数据库或者使用默认的初始化数据。可能需要设置数据库连接参数,如数据库URL、用户名和密码,以便程序能够正确地存取数据。 【标签】"flask"指示了项目的核心技术栈是Flask,这是一个轻量级的Python Web服务器网关接口(WSGI)应用框架。Flask以其简洁的API和高度可扩展性受到开发者的欢迎,适合构建中小型Web应用。在这个租房系统中,Flask可能被用来处理HTTP请求、路由、模板渲染以及与数据库的交互。 【压缩包子文件的文件名称列表】中的每个文件都有其特定的功能: 1. **detail_page.py**:这可能是房源详情页面的逻辑代码,用于展示房源的详细信息,包括图片、价格、位置等,并可能包含用户对房源的评价和咨询功能。 2. **user.py**:这部分代码可能涉及用户管理,包括用户注册、登录、个人信息维护等功能。它可能包含了处理用户认证和授权的逻辑。 3. **models.py**:模型文件通常用于定义数据库表结构和业务对象,比如房源模型、用户模型等。这里定义了如何将数据映射到数据库表中。 4. **index_page.py**:首页的逻辑,可能包括搜索框、热门房源推荐等功能,让用户可以快速浏览和搜索房源。 5. **list_page.py**:列表页面的实现,可能展示了按地理位置、价格等条件筛选后的房源列表。 6. **app.py**:这是Flask应用的主入口,定义了应用实例,配置路由和中间件,以及可能的错误处理。 7. **linerRegrssion.py**:线性回归模型的实现,可能用于预测房价或根据用户偏好进行智能推荐。 8. **settings.py**:应用的配置文件,包含各种环境变量,如数据库连接信息、日志设置、Flask的配置选项等。 9. **__pycache__**:Python编译后的缓存文件夹,不直接参与程序运行,但包含编译后的模块版本。 10. **.idea**:这是集成开发环境(IDE)如PyCharm的项目配置文件,包含了一些元数据,对运行系统来说并不重要。 综合以上分析,该智能租房系统通过Flask提供了用户友好的界面和后端逻辑,使用Python的线性回归模型来提升用户体验,但由于缺少SQL文件,部署前需自行创建数据库并完成数据迁移。同时,开发者可能还需要配置一些环境变量,以确保所有依赖项都已正确安装并设置。
2024-07-13 14:35:21 24.44MB flask
1
该项目为基于Python的Flask框架搭建的在线电影网站 项目介绍:网站前端采用HTML5编写,使用Bootstrap前端开发框架,后端使用Python3语言编写,以及Flask的Web框架,将MySQL作为数据库,开发工具使用PyCharm 网站功能:网站前台模块具有浏览视频、搜索视频、筛选视频、登录注册、收藏评论等功能。后台模块具有对视频、用户、管理员等各类管理功能 项目文件:整个movie_project目录 运行方法:运行movie_project目录下的manage.py nginx配置文件:位于movie_project目录下的nginx.conf,用于部署到服务器进行反向代理的相关配置
2024-07-12 20:19:27 32.62MB flask python
1