Packt.Python.Machine.Learning.Cookbook.2nd.Edition.2019
2023-01-01 03:42:01 16.23MB Python 机器学习
1
这里是 ShowMeAI 持续分享的【开源eBook】系列!内容覆盖机器学习、深度学习、数据科学、数据分析、大数据、Keras、TensorFlow、PyTorch、强化学习、数学基础等各个方向。整理自各平台的原作者公开分享(审核大大请放手) ◉ 简介:数值算法从『可计算的量』中近似地计算出『难以处理的量』,或者说,从数据中推断出一个潜在的量。因此计算程序可被视作 learning machine,使用贝叶斯推理来建立更灵活有效的计算算法。概率数值计算正式确立了『机器学习』和『应用数学』之间的联系。本书提供了大量的背景材料(还有数据、工作实例、练习及解答),更适用于AI、CS、统计学、应用数学的研究生。 ◉ 目录: 第一章:数学背景 第二章:整合 第三章:线性代数 第四章:局部优化 第五章:全局优化 第六章:求解常微分方程 第七章:前沿 第八章:习题答案
2022-12-31 12:25:23 3.65MB 人工智能 线性代数 数学 概率论
1
PointNet2用于3D点云的语义分割 马蒂厄·奥罕(Mathieu Orhan)和纪尧姆·迪基瑟(Guillaume Dekeyser)着(巴黎桥和歌剧院,2018年,巴黎)。 介绍 这个项目是PointNet2的学生分支,由斯坦福大学的Charles R. Qi,Li(Eric)Yi,Hao Su,Leonidas J. Guibas提供。 有关详细信息,您可以参考原始的PointNet2论文和代码( )。 该分支专注于语义分割,目的是比较三个数据集:Scannet,Semantic-8和Bertrand Le Sa​​ux空中LIDAR数据集。 为此,我们清理,记录,重构和改进原始项目。 稍后,我们将把相同的数据集与另一个最新的语义分割项目SnapNet进行比较。 相关性和数据 我们使用3 GTX Titan Black和GTX Titan X在Ubuntu 16.04上工作。
1
张量 使用TensorFlow轻松进行图像分类 () 要求: Mac或Linux机器 Python 3.5、3.6或3.7 您可以使用TensorPy对图像进行分类,只需在命令行中传递一个URL,或在Python程序中使用TensorPy。 完成所有实际工作。 TensorPy还通过将多个设置步骤自动化到一个脚本中来简化TensorFlow的安装(有关详细信息,请参见 )。 (请阅读 ,以详细了解TensorPy的工作原理。) Mac和Ubuntu / Linux的设置步骤 ( Windows和Docker用户:有关在Docker计算机上运行的信息,请参阅。Windows需要Docker运行TensorFlow。) 步骤1:创建并激活一个名为“ tensorpy”的虚拟环境 如果不确定如何创建虚拟环境,请进行。 步骤2:从GitHub克隆TensorPy存储库 git clone
1
在介绍了Qlearning的基础上,利用此方法解决实际问题
2022-12-30 10:35:42 193KB Q学习
1
这里是 ShowMeAI 持续分享的【开源eBook】系列!内容覆盖机器学习、深度学习、数据科学、数据分析、大数据、Keras、TensorFlow、PyTorch、强化学习、数学基础等各个方向。整理自各平台的原作者公开分享(审核大大请放手) ◉ 简介:这是本书的第二版,旨在为所有相关学科的读者提供一个清晰的、简单的强化学习关键思想&算法的说明。书籍在第一版的基础上,增加了近些年新的研究主题,内容重点放在核心的算法上。 ◉ 目录: 介绍 多臂老虎机 有限马尔可夫决策过程 动态规划 蒙特卡罗方法 时差学习 n-step Bootstrapping 使用表格方法进行规划和学习 带近似的策略预测 带近似的策略控制 带近似的离策略方法 资格痕迹 策略梯度方法 心理学 神经科学 应用与案例研究 前沿
2022-12-29 20:28:28 8.21MB 人工智能 强化学习 算法 动态规划
1
这里是 ShowMeAI 持续分享的【开源eBook】系列!内容覆盖机器学习、深度学习、数据科学、数据分析、大数据、Keras、TensorFlow、PyTorch、强化学习、数学基础等各个方向。整理自各平台的原作者公开分享(审核大大请放手) ◉ 简介:这是新书『强化学习的数学基础』的书稿,作者赵世钰,现任西湖大学工学院智能无人系统实验室主任。2022年秋季是作者第四次教授强化学习的研究生课程,撰写这份资料是为了弥补已有教材的不足。 ◉ 目录: 第2章:贝尔曼方程,是分析状态值的基本工具 第3章:贝尔曼最优方程,是一个特殊的贝尔曼方程 第4章:值迭代算法,是一种求解贝尔曼最优方程的算法 第5章:蒙特卡罗学习,是第4章策略迭代算法的扩展 第6章:随机逼近的基础知识 第7章:时差学习,第6章是本章的基础 第8章:扩展了表格时间对价值函数逼近情况的差分学习方法 第9章:策略迭代 第10章:actor-critic 方法
2022-12-29 20:28:27 1.68MB 人工智能 强化学习 机器学习 数学
1
信用风险建模:使用Python和ML进行信用风险分析
2022-12-29 02:06:15 7.75MB python machine-learning numpy scikit-learn
1
用Python QuantStats编写的量化工具的投资组合分析:量化工具的投资组合分析QuantStats Python库执行投资组合分析,通过向量化分析人员和投资组合管理人员提供深入的分析和风险度量,可以更好地了解其绩效。 Changelog»QuantStats包含3个主要模块:quantstats.stats-用于计算各种性能指标,例如夏普比率,获胜率,波动率等。quantstats.plots-用于可视化性能,缩编,滚动统计,每月报告
2022-12-28 21:42:39 1.25MB Python Deep Learning
1
论文Deep Learning-Based Channel Estimation for Beamspace mmWave Massive MIMO Systems源码。 这是Python版本的源码。 适合人群:人工智能、通信类研究人员。
2022-12-27 19:26:19 23KB MIMO
1