1 Introduction 19 1.1 What Is Learning? 19 1.2 When Do We Need Machine Learning? 21 1.3 Types of Learning 22 1.4 Relations to Other Fields 24 1.5 How to Read This Book 25 1.5.1 Possible Course Plans Based on This Book 26 1.6 Notation 27 Part I Foundations 31 2 A Gentle Start 33 2.1 A Formal Model { The Statistical Learning Framework 33 2.2 Empirical Risk Minimization 35 2.2.1 Something May Go Wrong { Overtting 35 2.3 Empirical Risk Minimization with Inductive Bias 36 2.3.1 Finite Hypothesis Classes 37 2.4 Exercises 41 3 A Formal Learning Model 43 3.1 PAC Learning 43 3.2 A More General Learning Model 44 3.2.1 Releasing the Realizability Assumption { Agnostic PAC Learning 45 3.2.2 The Scope of Learning Problems Modeled 47 3.3 Summary 49 3.4 Bibliographic Remarks 50 3.5 Exercises 50 4 Learning via Uniform Convergence 54 4.1 Uniform Convergence Is Sucient for Learnability 54 4.2 Finite Classes Are Agnostic PAC Learnable 55 Understanding Machine Learning, c 2014 by Shai Shalev-Shwartz and Shai Ben-David Published 2014 by Cambridge University Press. Personal use only. Not for distribution. Do not post. Please link to http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning x Contents 4.3 Summary 58 4.4 Bibliographic Remarks 58 4.5 Exercises 58 5 The Bias-Complexity Tradeo 60 5.1 The No-Free-Lunch Theorem 61 5.1.1 No-Free-Lunch and Prior Knowledge 63 5.2 Error Decomposition 64 5.3 Summary 65 5.4 Bibliographic Remarks 66 5.5 Exercises 66 6 The VC-Dimension 67 6.1 Innite-Size Classes Can Be Learnable 67 6.2 The VC-Dimension 68 6.3 Examples 70 6.3.1 Threshold Functions 70 6.3.2 Intervals 71 6.3.3 Axis Aligned Rectangles 71 6.3.4 Finite Classes 72 6.3.5 VC-Dimension and the Number of Parameters 72 6.4 The Fundamental Theorem of PAC learning 72 6.5 Proof of Theorem 6.7 73 6.5.1 Sauer's Lemma and the Growth Function 73 6.5.2 Uniform Convergence for Classes of Small Eective Size 75 6.6 Summary 78 6.7 Bibliographic remarks 78 6.8 Exercises 78 7 Nonuniform Learnability 83 7.1 Nonuniform Learnability 83 7.1.1 Characterizing Nonuniform Learnability 84 7.2 Structural Risk Minimization 85 7.3 Minimum Description Length and Occam's Razor 89 7.3.1 Occam's Razor 91 7.4 Other Notions of Learnability { Consistency 92 7.5 Discussing the Dierent Notions of Learnability 93 7.5.1 The No-Free-Lunch Theorem Revisited 95 7.6 Summary 96 7.7 Bibliographic Remarks 97 7.8 Exercises 97 8 The Runtime of Learning 100 8.1 Computational Complexity of Learning 101 Contents xi 8.1.1 Formal Denition* 102 8.2 Implementing the ERM Rule 103 8.2.1 Finite Classes 104 8.2.2 Axis Aligned Rectangles 105 8.2.3 Boolean Conjunctions 106 8.2.4 Learning 3-Term DNF 107 8.3 Eciently Learnable, but Not by a Proper ERM 107 8.4 Hardness of Learning* 108 8.5 Summary 110 8.6 Bibliographic Remarks 110 8.7 Exercises 110 Part II From Theory to Algorithms 115 9 Linear Predictors 117 9.1 Halfspaces 118 9.1.1 Linear Programming for the Class of Halfspaces 119 9.1.2 Perceptron for Halfspaces 120 9.1.3 The VC Dimension of Halfspaces 122 9.2 Linear Regression 123 9.2.1 Least Squares 124 9.2.2 Linear Regression for Polynomial Regression Tasks 125 9.3 Logistic Regression 126 9.4 Summary 128 9.5 Bibliographic Remarks 128 9.6 Exercises 128 10 Boosting 130 10.1 Weak Learnability 131 10.1.1 Ecient Implementation of ERM for Decision Stumps 133 10.2 AdaBoost 134 10.3 Linear Combinations of Base Hypotheses 137 10.3.1 The VC-Dimension of L(B; T) 139 10.4 AdaBoost for Face Recognition 140 10.5 Summary 141 10.6 Bibliographic Remarks 141 10.7 Exercises 142 11 Model Selection and Validation 144 11.1 Model Selection Using SRM 145 11.2 Validation 146 11.2.1 Hold Out Set 146 11.2.2 Validation for Model Selection 147 11.2.3 The Model-Selection Curve 148 xii Contents 11.2.4 k-Fold Cross Validation 149 11.2.5 Train-Validation-Test Split 150 11.3 What to Do If Learning Fails 151 11.4 Summary 154 11.5 Exercises 154 12 Convex Learning Problems 156 12.1 Convexity, Lipschitzness, and Smoothness 156 12.1.1 Convexity 156 12.1.2 Lipschitzness 160 12.1.3 Smoothness 162 12.2 Convex Learning Problems 163 12.2.1 Learnability of Convex Learning Problems 164 12.2.2 Convex-Lipschitz/Smooth-Bounded Learning Problems 166 12.3 Surrogate Loss Functions 167 12.4 Summary 168 12.5 Bibliographic Remarks 169 12.6 Exercises 169 13 Regularization and Stability 171 13.1 Regularized Loss Minimization 171 13.1.1 Ridge Regression 172 13.2 Stable Rules Do Not Overt 173 13.3 Tikhonov Regularization as a Stabilizer 174 13.3.1 Lipschitz Loss 176 13.3.2 Smooth and Nonnegative Loss 177 13.4 Controlling the Fitting-Stability Tradeo 178 13.5 Summary 180 13.6 Bibliographic Remarks 180 13.7 Exercises 181 14 Stochastic Gradient Descent 184 14.1 Gradient Descent 185 14.1.1 Analysis of GD for Convex-Lipschitz Functions 186 14.2 Subgradients 188 14.2.1 Calculating Subgradients 189 14.2.2 Subgradients of Lipschitz Functions 190 14.2.3 Subgradient Descent 190 14.3 Stochastic Gradient Descent (SGD) 191 14.3.1 Analysis of SGD for Convex-Lipschitz-Bounded Functions 191 14.4 Variants 193 14.4.1 Adding a Projection Step 193 14.4.2 Variable Step Size 194 14.4.3 Other Averaging Techniques 195 Contents xiii 14.4.4 Strongly Convex Functions* 195 14.5 Learning with SGD 196 14.5.1 SGD for Risk Minimization 196 14.5.2 Analyzing SGD for Convex-Smooth Learning Problems 198 14.5.3 SGD for Regularized Loss Minimization 199 14.6 Summary 200 14.7 Bibliographic Remarks 200 14.8 Exercises 201 15 Support Vector Machines 202 15.1 Margin and Hard-SVM 202 15.1.1 The Homogenous Case 205 15.1.2 The Sample Complexity of Hard-SVM 205 15.2 Soft-SVM and Norm Regularization 206 15.2.1 The Sample Complexity of Soft-SVM 208 15.2.2 Margin and Norm-Based Bounds versus Dimension 208 15.2.3 The Ramp Loss* 209 15.3 Optimality Conditions and \Support Vectors"* 210 15.4 Duality* 211 15.5 Implementing Soft-SVM Using SGD 212 15.6 Summary 213 15.7 Bibliographic Remarks 213 15.8 Exercises 214 16 Kernel Methods 215 16.1 Embeddings into Feature Spaces 215 16.2 The Kernel Trick 217 16.2.1 Kernels as a Way to Express Prior Knowledge 221 16.2.2 Characterizing Kernel Functions* 222 16.3 Implementing Soft-SVM with Kernels 222 16.4 Summary 224 16.5 Bibliographic Remarks 225 16.6 Exercises 225 17 Multiclass, Ranking, and Complex Prediction Problems 227 17.1 One-versus-All and All-Pairs 227 17.2 Linear Multiclass Predictors 230 17.2.1 How to Construct 230 17.2.2 Cost-Sensitive Classication 232 17.2.3 ERM 232 17.2.4 Generalized Hinge Loss 233 17.2.5 Multiclass SVM and SGD 234 17.3 Structured Output Prediction 236 17.4 Ranking 238 xiv Contents 17.4.1 Linear Predictors for Ranking 240 17.5 Bipartite Ranking and Multivariate Performance Measures 243 17.5.1 Linear Predictors for Bipartite Ranking 245 17.6 Summary 247 17.7 Bibliographic Remarks 247 17.8 Exercises 248 18 Decision Trees 250 18.1 Sample Complexity 251 18.2 Decision Tree Algorithms 252 18.2.1 Implementations of the Gain Measure 253 18.2.2 Pruning 254 18.2.3 Threshold-Based Splitting Rules for Real-Valued Features 255 18.3 Random Forests 255 18.4 Summary 256 18.5 Bibliographic Remarks 256 18.6 Exercises 256 19 Nearest Neighbor 258 19.1 k Nearest Neighbors 258 19.2 Analysis 259 19.2.1 A Generalization Bound for the 1-NN Rule 260 19.2.2 The \Curse of Dimensionality" 263 19.3 Ecient Implementation* 264 19.4 Summary 264 19.5 Bibliographic Remarks 264 19.6 Exercises 265 20 Neural Networks 268 20.1 Feedforward Neural Networks 269 20.2 Learning Neural Networks 270 20.3 The Expressive Power of Neural Networks 271 20.3.1 Geometric Intuition 273 20.4 The Sample Complexity of Neural Networks 274 20.5 The Runtime of Learning Neural Networks 276 20.6 SGD and Backpropagation 277 20.7 Summary 281 20.8 Bibliographic Remarks 281 20.9 Exercises 282 Part III Additional Learning Models 285 21 Online Learning 287 21.1 Online Classication in the Realizable Case 288 Contents xv 21.1.1 Online Learnability 290 21.2 Online Classication in the Unrealizable Case 294 21.2.1 Weighted-Majority 295 21.3 Online Convex Optimization 300 21.4 The Online Perceptron Algorithm 301 21.5 Summary 304 21.6 Bibliographic Remarks 305 21.7 Exercises 305 22 Clustering 307 22.1 Linkage-Based Clustering Algorithms 310 22.2 k-Means and Other Cost Minimization Clusterings 311 22.2.1 The k-Means Algorithm 313 22.3 Spectral Clustering 315 22.3.1 Graph Cut 315 22.3.2 Graph Laplacian and Relaxed Graph Cuts 315 22.3.3 Unnormalized Spectral Clustering 317 22.4 Information Bottleneck* 317 22.5 A High Level View of Clustering 318 22.6 Summary 320 22.7 Bibliographic Remarks 320 22.8 Exercises 320 23 Dimensionality Reduction 323 23.1 Principal Component Analysis (PCA) 324 23.1.1 A More Ecient Solution for the Case d m 326 23.1.2 Implementation and Demonstration 326 23.2 Random Projections 329 23.3 Compressed Sensing 330 23.3.1 Proofs* 333 23.4 PCA or Compressed Sensing? 338 23.5 Summary 338 23.6 Bibliographic Remarks 339 23.7 Exercises 339 24 Generative Models 342 24.1 Maximum Likelihood Estimator 343 24.1.1 Maximum Likelihood Estimation for Continuous Random Variables 344 24.1.2 Maximum Likelihood and Empirical Risk Minimization 345 24.1.3 Generalization Analysis 345 24.2 Naive Bayes 347 24.3 Linear Discriminant Analysis 347 24.4 Latent Variables and the EM Algorithm 348 xvi Contents 24.4.1 EM as an Alternate Maximization Algorithm 350 24.4.2 EM for Mixture of Gaussians (Soft k-Means) 352 24.5 Bayesian Reasoning 353 24.6 Summary 355 24.7 Bibliographic Remarks 355 24.8 Exercises 356 25 Feature Selection and Generation 357 25.1 Feature Selection 358 25.1.1 Filters 359 25.1.2 Greedy Selection Approaches 360 25.1.3 Sparsity-Inducing Norms 363 25.2 Feature Manipulation and Normalization 365 25.2.1 Examples of Feature Transformations 367 25.3 Feature Learning 368 25.3.1 Dictionary Learning Using Auto-Encoders 368 25.4 Summary 370 25.5 Bibliographic Remarks 371 25.6 Exercises 371 Part IV Advanced Theory 373 26 Rademacher Complexities 375 26.1 The Rademacher Complexity 375 26.1.1 Rademacher Calculus 379 26.2 Rademacher Complexity of Linear Classes 382 26.3 Generalization Bounds for SVM 383 26.4 Generalization Bounds for Predictors with Low `1 Norm 386 26.5 Bibliographic Remarks 386 27 Covering Numbers 388 27.1 Covering 388 27.1.1 Properties 388 27.2 From Covering to Rademacher Complexity via Chaining 389 27.3 Bibliographic Remarks 391 28 Proof of the Fundamental Theorem of Learning Theory 392 28.1 The Upper Bound for the Agnostic Case 392 28.2 The Lower Bound for the Agnostic Case 393 28.2.1 Showing That m(; ) 0:5 log(1=(4))=2 393 28.2.2 Showing That m(; 1=8) 8d=2 395 28.3 The Upper Bound for the Realizable Case 398 28.3.1 From -Nets to PAC Learnability 401 Contents xvii 29 Multiclass Learnability 402 29.1 The Natarajan Dimension 402 29.2 The Multiclass Fundamental Theorem 403 29.2.1 On the Proof of Theorem 29.3 403 29.3 Calculating the Natarajan Dimension 404 29.3.1 One-versus-All Based Classes 404 29.3.2 General Multiclass-to-Binary Reductions 405 29.3.3 Linear Multiclass Predictors 405 29.4 On Good and Bad ERMs 406 29.5 Bibliographic Remarks 408 29.6 Exercises 409 30 Compression Bounds 410 30.1 Compression Bounds 410 30.2 Examples 412 30.2.1 Axis Aligned Rectangles 412 30.2.2 Halfspaces 412 30.2.3 Separating Polynomials 413 30.2.4 Separation with Margin 414 30.3 Bibliographic Remarks 414 31 PAC-Bayes 415 31.1 PAC-Bayes Bounds 415 31.2 Bibliographic Remarks 417 31.3 Exercises 417 Appendix A Technical Lemmas 419 Appendix B Measure Concentration 422 Appendix C Linear Algebra 430 Notes 435
2023-01-08 22:49:46 2.41MB machine learning
1
The Deep Learning textbook is a resource intended to help students and practitioners enter the field of machine learning in general and deep learning in particular. Table of Contents Chapter 1 Introduction Part I: Applied Math and Machine Learning Basics Chapter 2 Linear Algebra Chapter 3 Probability and Information Theory Chapter 4 Numerical Computation Chapter 5 Machine Learning Basics Part II: Modern Practical Deep Networks Chapter 6 Deep Feedforward Networks Chapter 7 Regularization Chapter 8 Optimization for Training Deep Models Chapter 9 Convolutional Networks Chapter 10 Sequence Modeling: Recurrent and Recursive Nets Chapter 11 Practical Methodology Chapter 12 Applications Part III: Deep Learning Research Chapter 13 Linear Factor Models Chapter 14 Autoencoders Chapter 15 Representation Learning Chapter 16 Structured Probabilistic Models for Deep Learning Chapter 17 Monte Carlo Methods Chapter 18 Confronting the Partition Function Chapter 19 Approximate Inference Chapter 20 Deep Generative Models
2023-01-07 16:10:50 77.75MB Deep Learning
1
平滑分类器认证稳健性的一致性正则化 (NeurIPS2020) 该存储库包含和的论文“平滑分类器的证明稳健性的一致性正则化”代码。 依存关系 conda create -n smoothing-consistency python=3 conda activate smoothing-consistency # IMPORTANT: Please make sure `pytorch != 1.4.0` # Currently, our code is not compatible to `pytorch == 1.4.0`; # See more details at `https://github.com/pytorch/pytorch/issues/32395`. # Below is for linux, with CUDA 10; see https://pytorc
1
machine-learning-ex4(编程作业:Neural Networks Learning,程序运行结果正确)
2023-01-05 18:46:43 15.3MB 机器学习
1
《A Tandem Learning Rule for Effective Training and Rapid Inference of Deep Spiking Neural Networks》,论文原文
2023-01-05 13:28:33 2.86MB 脉冲神经网络 BPTT IEEE
1
在Arduino Nano 33 BLE Sense上训练和部署Tensorflow Lite RNN模型的更简单方法-用于微语音识别。
2023-01-04 18:15:28 373KB artificial intelligence machine learning
1
Machine_Learning_Algorithms-master,Machine_Learning_Algorithms-master 配套数据集及源代码 Machine_Learning_Algorithms-master,Machine_Learning_Algorithms-master 配套数据集及源代码
Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow(3rd Edition)
2023-01-04 11:27:57 66.95MB machine learning
1