概率数值方法 / Probabilistic Numerics:Computation as Machine Learning

上传者: ShowMeAI | 上传时间: 2022-12-31 12:25:23 | 文件大小: 3.65MB | 文件类型: PDF
这里是 ShowMeAI 持续分享的【开源eBook】系列!内容覆盖机器学习、深度学习、数据科学、数据分析、大数据、Keras、TensorFlow、PyTorch、强化学习、数学基础等各个方向。整理自各平台的原作者公开分享(审核大大请放手) ◉ 简介:数值算法从『可计算的量』中近似地计算出『难以处理的量』,或者说,从数据中推断出一个潜在的量。因此计算程序可被视作 learning machine,使用贝叶斯推理来建立更灵活有效的计算算法。概率数值计算正式确立了『机器学习』和『应用数学』之间的联系。本书提供了大量的背景材料(还有数据、工作实例、练习及解答),更适用于AI、CS、统计学、应用数学的研究生。 ◉ 目录: 第一章:数学背景 第二章:整合 第三章:线性代数 第四章:局部优化 第五章:全局优化 第六章:求解常微分方程 第七章:前沿 第八章:习题答案

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明