为解决判别尺度空间跟踪(DSST)算法在行人处于长期完全遮挡后又重新出现的情况下无法跟踪的问题, 提出了一种改进的跟踪算法(DDSST). 在DSST框架下,首先对行人目标跟踪, 然后, 引入高置信度指标计算策略作为跟踪准确可信度反馈机制, 在跟踪丢失时利用可变部件模型(DPM)对跟踪目标重新定位. 最后, 通过评估在线目标跟踪基准(OTB)数据集和实际环境拍摄的视频序列对DDSST算法准确性进行验证, 并与其他跟踪算法进行比较. 实验分析表明, 改进算法相较DSST的距离精度与成功率提高了4.1% 和6%, 相比其他算法性能更优, 且在形变、遮挡、平面外旋转、运动模糊和尺度变换等条件下跟踪更稳定.
1