Statistical foundations of machine learning
2023-01-26 21:11:54 2.18MB Statistical foundations of machine
1
Learning Linux Binary Analysis 英文无水印pdf pdf所有页面使用FoxitReader和PDF-XChangeViewer测试都可以打开 本资源转载自网络,如有侵权,请联系上传者或csdn删除 本资源转载自网络,如有侵权,请联系上传者或csdn删除
2023-01-26 15:28:59 2.04MB Learning Linux Binary Analysis
1
An_Introduction_to_Deep_Learning_for_the_Physical_Layer 翻译
2023-01-19 17:30:40 2.12MB
1
作者:詹姆斯·狄更斯(James Dickens),锡7118781 最终项目-CSI 5155:机器学习,Herna Viktor博士教授的课程。 这是我针对数据的二进制分类的机器学习任务的代码,该代码可从,该数据由从1994年提取的加权普查数据组成1995年由美国人口普查局进行的当前人口调查。 目标是评估五个常用的机器学习模型(包括半监督神经网络!),以对给定实例每年赚取超过50K进行分类,也就是二进制分类任务。 我的代码组织如下: Preprocess.py接收初始的census-income.data文件和census-income.test文件,然后 打印有关数据及其属性的信息 从训练数据中删除重复项 处理实例重量冲突 将缺失的值替换为其默认值 将结果写入文件:“ census-income.data/training_data_preprocess1”,“ census
2023-01-18 15:41:28 31.09MB Python
1
Learning Spark SQL 英文epub 本资源转载自网络,如有侵权,请联系上传者或csdn删除 本资源转载自网络,如有侵权,请联系上传者或csdn删除
2023-01-17 16:50:56 17.19MB Learning Spark SQL
1
强化学习教父 Richard Sutton 的经典教材《Reinforcement Learning:An Introduction》第二版配套代码,本书分为三大部分,共十七章,对其简介和框架做了扼要介绍
1
Rex:一个开源的四足机器人 该项目的目标是训练一个开源3D打印四足机器人,探索Reinforcement Learning和OpenAI Gym 。 目的是让机器人学习模拟中的家务和一般任务,然后在不进行任何其他手动调整的情况下,在真实机器人上成功地传递知识( Control Policies )。 该项目的主要灵感来自波士顿动力公司所做的令人难以置信的工作。 相关资料库 一个CLI应用程序,用于引导和控制Rex运行经过训练的Control Policies 。 cloud-用于在云上训练Rex的CLI应用程序。 Rex-Gym:OpenAI Gym环境和工具 该存储库包含用于训练Rex的OpenAI Gym Environments集合,Rex URDF模型,学习代理实现(PPO)和一些脚本,以开始训练课程并可视化学习到的Control Polices 。 此CLI应用程序允许批量培训,策略重现和单个培训呈现的会话。 安装 创建一个Python 3.7虚拟环境,例如使用Anaconda conda create -n rex python=3.7 anaconda cond
2023-01-14 16:48:56 117.44MB machine-learning reinforcement-learning robot robotics
1
machine_learning 一个Matlab应用,使用支持向量机对图片进行分类,其中图片是猫脸还是狗脸 #数据集 为了训练分类器,我使用了来自 张维伟,孙健和唐小鸥,“猫头检测-如何有效利用形状和纹理特征”,Proc。 欧洲Conf。 计算机视觉,第一卷。 4,第802-816页,2008年。 和来自的斯坦福狗数据集 #托多斯 由于猫或狗之间难以分辨,因此需要预先修剪脸部以获得最佳效果。 可能没有第三个值,然后搜索猫脸或狗脸的图片(分解成窗户)。 或者只是狗或不面对,等等。 #Cat注释数据集 ###结构 |-- cat_dataset |-- CAT_00 |-- 00000001_000.jpg |-- 00000001_000.jpg.cat |-- 00000001_005.jpg |-- 000
2023-01-11 17:01:38 592KB MATLAB
1
心音-深度学习 该项目旨在在低功耗ARM处理器(例如在树莓派上找到的处理器)上运行。 目的是将该软件打包到一个小型硬件设备中,发展中国家的护理工作者可以使用该设备来检测心脏病的早期发作。
2023-01-10 21:55:38 182.83MB tensorflow raspberrypi signal-processing heartbeat
1
Thank you for purchasing the MEAP for Deep Learning with R. If you are looking for a resource to learn about deep learning from scratch and to quickly become able to use this knowledge to solve real-world problems, you have found the right book. Deep Learning with R is meant for statisticians, analysts, engineers and students with a reasonable amount of R experience, but no significant knowledge of machine learning and deep learning. This book is an adaptation of my previously published Deep Learning with Python, with all of the code examples using the R interface to Keras. The goal of the book is to provide a learning resource for the R community that goes all the way from basic theory to advanced practical applications. Deep learning is an immensely rich subfield of machine learning, with powerful applications ranging from machine perception to natural language processing, all the way up to creative AI. Yet, its core concepts are in fact very simple. Deep learning is often presented as shrouded in a certain mystique, with references to algorithms that “work like the brain”, that “think” or “understand”. Reality is however quite far from this science- fiction dream, and I will do my best in these pages to dispel these illusions. I believe that there are no difficult ideas in deep learning, and that’s why I started this book, based on premise that all of the important concepts and applications in this field could be taught to anyone, with very few prerequisites. This book is structured around a series of practical code examples, demonstrating on real- world problems every the notions that gets introduced. I strongly believe in the value of teaching using concrete examples, anchoring theoretical ideas into actual results and tangible code patterns. These examples all rely on Keras, the deep learning library. When I released the initial version of Keras almost two years ago, little did I know that it would quickly skyrocket to become one of the most widely used deep learning frameworks. A big part of that success is that Keras has always put ease of use and accessibility front and center. This same reason is what makes Keras a great library to get started with deep learning, and thus a great fit for this book. By the time you reach the end of this book, you will have become a Keras expert. I hope that you will this book valuable —deep learning will definitely open up new intellectual perspectives for you, and in fact it even has the potential to transform your career, being the most in-demand scientific specialization these days. I am looking forward to your reviews and comments. Your feedback is essential in order to write the best possible book, that will benefit the greatest number of people.
2023-01-10 02:56:41 18.3MB Deep Learning
1