平滑分类器认证稳健性的一致性正则化 (NeurIPS2020) 该存储库包含和的论文“平滑分类器的证明稳健性的一致性正则化”代码。 依存关系 conda create -n smoothing-consistency python=3 conda activate smoothing-consistency # IMPORTANT: Please make sure `pytorch != 1.4.0` # Currently, our code is not compatible to `pytorch == 1.4.0`; # See more details at `https://github.com/pytorch/pytorch/issues/32395`. # Below is for linux, with CUDA 10; see https://pytorc
1
针对位置优化的对抗补丁进行对抗训练 | | | | 论文代码: Sukrut Rao,David Stutz,Bernt Schiele。 (2020)针对位置优化的对抗补丁的对抗训练。 在:Bartoli A.,Fusiello A.(编辑)《计算机视觉– ECCV 2020研讨会》中。 ECCV2020。《计算机科学讲义》,第12539卷。ChamSpringer。 设置 要求 Python 3.7或更高版本 火炬 科学的 h5py scikit图像 scikit学习 可选要求 使用脚本将数据转换为HDF5格式 火炬视觉 枕头 大熊猫 使用Tensorboard日志记录 张量板 除了Python和PyTorch,所有要求都可以使用pip直接安装: $ pip install -r requirements.txt 设定路径 在 ,设置以下变量: BASE_DATA :数据
1