包含汽车、摩托车、自行车、电动车、行人、卡车、公交车、猫、狗,九个分类共1828张图片
2024-04-13 20:22:24 478.31MB 数据集
1
基于opencv与机器学习的摄像头实时识别数字,包括完整代码、数据集和训练好的模型。识别准确率高达95%!!代码注释详细,方便理解!代码可以直接运行使用,没有门槛。
2024-04-13 19:52:48 68.25MB opencv 机器学习 数据集 数字识别
1
深度学习上课状态检测数据集,适用于智慧课堂等项目,包含图片以及xml标签
2024-04-12 19:45:57 3.61MB 数据集 深度学习 目标检测 人工智能
1
垃圾分类数据集和tf代码+8G数据集
2024-04-12 14:23:15 102.29MB 数据集
1
CICIDS2017数据集包含良性和最新的常见攻击,与真实的现实世界数据(PCAPs)相类似。它还包括使用CICFlowMeter进行网络流量分析的结果,并根据时间戳、源和目的IP、源和目的端口、协议和攻击来标记流量(CSV文件)。此外,还提供了提取的特征定义。 生成真实的背景流量是我们建立这个数据集的首要任务。我们使用了我们提出的B-Profile系统(Sharafaldin, et al. 2016)来描述人类互动的抽象行为并生成自然的良性背景流量。对于这个数据集,我们建立了基于HTTP、HTTPS、FTP、SSH和电子邮件协议的25个用户的抽象行为。Friday-WorkingHours-Afternoon-DDos.pcap_ISCX.csv 2023-02-28 73.55MB Wednesday-workingHours.pcap_ISCX.csv 2023-02-28 214.74MB Friday-WorkingHours-Afternoon-PortScan.pcap_ISCX.csv 2023-02-28 73.34MB Friday-WorkingHours-Mo
2024-04-12 12:10:51 210.28MB 机器学习 python 数据集
1
2019JDATA-用户对品类下店铺的购买预测数据。地址链接如下: https://jdata.jd.com/html/detail.html?id=2,这个京东用户行为数据分析的数据集:《用户购买时间预测》。
2024-04-11 19:28:27 372.51MB 数据集
1
KITTI数据集通过evo转换成tum数据,对应的结果,以及xx.txt的poses文件和times.txt的时间戳文件
2024-04-11 14:29:42 2.98MB 数据集 kitti
1
1.本项目专注于解决出国自驾游特定场景下的交通标志识别问题。借助Kaggle上的丰富交通标志数据集,我们采用了VGG和GoogLeNet等卷积神经网络模型进行训练。通过对网络架构和参数的巧妙调整,致力于提升模型在不同类型交通标志识别方面的准确率。 2.项目运行环境包括:Python 环境、Anaconda环境。 3.项目包括3个模块:数据预处理、模型构建、模型训练及保存。项目使用德国交通标志识别基准数据集(GTSRB),此数据集包含50000张在各种环境下拍摄的交通标志图像;模型构建包括VGG模型和GoogLeNet模型简化版深度学习模型,MiniGoogLeNet由Inception模块、Downsample模块和卷积模块组成,卷积模块包括卷积层、激活函数和批量归一化;通过随机旋转等方法进行数据增强,选用Adam算法作为优化算法,随着迭代的次数增加降低学习速率,经过尝试,速率设为0.001时效果最好。 4.项目博客:https://blog.csdn.net/qq_31136513/article/details/135080491
2024-04-11 12:51:19 32.13MB 深度学习 python 图像识别 目标检测
1
1.项目利用TF-IDF(Term Frequency-Inverse Document Frequency 词频-逆文档频率)检索模型和CNN(卷积神经网络)精排模型构建了一个聊天机器人,旨在实现一个能够进行日常对话和情感陪伴的聊天机器人。 2.项目运行环境:Python环境、TensorFlow 环境和Python包jieba、tqdm、nltk、pyqt5等。 3.项目包括4个模块:数据预处理、模型创建与编译、模型训练及保存、模型生成。数据来源于GitHub开源语料集,下 载地址为: https://github.com/codemayq。在TF-IDF模型中定义的架构为:计算TF-IDF向量,通过倒排表的方式找到与当前输入类似的问题描述,针对候选问题进行余弦相似度计算。模型生成一是通过中控模块调用召回和精排模型;二是通过训练好的召回和精排模型进行语义分类,并且获取输出。 4.准确率评估:测试准确率在90%左右。 5.项目博客:https://blog.csdn.net/qq_31136513/article/details/131540115
2024-04-11 11:51:58 49.67MB tensorflow 深度学习 人工智能 python
1
红外行人检测数据集,总共有8000张图片,由FLIR热红外相机采集得到,全部已经标注包含txt标签文件 里面有jpeg图片和txt格式的标签。 已经按照8:2的比例划分好数据集,训练集6400个,验证集1600个。 nc: 2 names: ['car','person'] 总共927M,通过百度网盘链接发送
2024-04-10 20:43:02 927.46MB 数据集
1