基于简化版python+VGG+MiniGoogLeNet的智能43类交通标志识别-深度学习算法应用(含工程源码)+数据集+模型

上传者: 31136513 | 上传时间: 2024-04-11 12:51:19 | 文件大小: 32.13MB | 文件类型: RAR
1.本项目专注于解决出国自驾游特定场景下的交通标志识别问题。借助Kaggle上的丰富交通标志数据集,我们采用了VGG和GoogLeNet等卷积神经网络模型进行训练。通过对网络架构和参数的巧妙调整,致力于提升模型在不同类型交通标志识别方面的准确率。 2.项目运行环境包括:Python 环境、Anaconda环境。 3.项目包括3个模块:数据预处理、模型构建、模型训练及保存。项目使用德国交通标志识别基准数据集(GTSRB),此数据集包含50000张在各种环境下拍摄的交通标志图像;模型构建包括VGG模型和GoogLeNet模型简化版深度学习模型,MiniGoogLeNet由Inception模块、Downsample模块和卷积模块组成,卷积模块包括卷积层、激活函数和批量归一化;通过随机旋转等方法进行数据增强,选用Adam算法作为优化算法,随着迭代的次数增加降低学习速率,经过尝试,速率设为0.001时效果最好。 4.项目博客:https://blog.csdn.net/qq_31136513/article/details/135080491

文件下载

资源详情

[{"title":"( 26 个子文件 32.13MB ) 基于简化版python+VGG+MiniGoogLeNet的智能43类交通标志识别-深度学习算法应用(含工程源码)+数据集+模型","children":[{"title":"项目13 基于CNN的交通标志识别","children":[{"title":"工程文件","children":[{"title":"Test.ipynb <span style='color:#111;'> 390.59KB </span>","children":null,"spread":false},{"title":"pyimagesearch","children":[{"title":"Net2.ipynb <span style='color:#111;'> 3.43KB </span>","children":null,"spread":false},{"title":"Net4.ipynb <span style='color:#111;'> 7.51KB </span>","children":null,"spread":false},{"title":"Net4.png <span style='color:#111;'> 156.13KB </span>","children":null,"spread":false},{"title":"Net2.png <span style='color:#111;'> 113.67KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"__init__.cpython-37.pyc <span style='color:#111;'> 153B </span>","children":null,"spread":false}],"spread":true},{"title":".ipynb_checkpoints","children":[{"title":"Net4-checkpoint.ipynb <span style='color:#111;'> 7.51KB </span>","children":null,"spread":false},{"title":"Net2-checkpoint.ipynb <span style='color:#111;'> 3.43KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"signnames1.csv <span style='color:#111;'> 1.54KB </span>","children":null,"spread":false},{"title":"MiniVGG-First.ipynb <span style='color:#111;'> 23.77KB </span>","children":null,"spread":false},{"title":"MiniVGG-Final.ipynb <span style='color:#111;'> 21.10KB </span>","children":null,"spread":false},{"title":"gtsrb-german-traffic-sign","children":null,"spread":false},{"title":"说明.txt <span style='color:#111;'> 834B </span>","children":null,"spread":false},{"title":"Ipynb_importer.py <span style='color:#111;'> 2.76KB </span>","children":null,"spread":false},{"title":"output","children":[{"title":"test5.png <span style='color:#111;'> 33.00KB </span>","children":null,"spread":false},{"title":"test4.png <span style='color:#111;'> 37.59KB </span>","children":null,"spread":false},{"title":"testmodel4.pb <span style='color:#111;'> 1.97MB </span>","children":null,"spread":false},{"title":"test2.png <span style='color:#111;'> 29.54KB </span>","children":null,"spread":false},{"title":"testmodel2.pb <span style='color:#111;'> 13.27MB </span>","children":null,"spread":false},{"title":"testmodel5.pb <span style='color:#111;'> 19.41MB </span>","children":null,"spread":false}],"spread":true},{"title":"MiniGoogLeNet-Final.ipynb <span style='color:#111;'> 25.19KB </span>","children":null,"spread":false},{"title":"signnames.csv <span style='color:#111;'> 1.02KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"Ipynb_importer.cpython-37.pyc <span style='color:#111;'> 2.52KB </span>","children":null,"spread":false}],"spread":true},{"title":".ipynb_checkpoints","children":[{"title":"MiniGoogLeNet-Final-checkpoint.ipynb <span style='color:#111;'> 23.03KB </span>","children":null,"spread":false},{"title":"MiniVGG-First-checkpoint.ipynb <span style='color:#111;'> 22.29KB </span>","children":null,"spread":false},{"title":"MiniVGG-Final-checkpoint.ipynb <span style='color:#111;'> 21.32KB </span>","children":null,"spread":false},{"title":"Test-checkpoint.ipynb <span style='color:#111;'> 390.59KB </span>","children":null,"spread":false}],"spread":false}],"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明