基于TF-IDF+Tensorflow+PyQt+孪生神经网络智能聊天机器人(深度学习)含Python工程源码及模型+训练数据集

上传者: 31136513 | 上传时间: 2024-04-11 11:51:58 | 文件大小: 49.67MB | 文件类型: RAR
1.项目利用TF-IDF(Term Frequency-Inverse Document Frequency 词频-逆文档频率)检索模型和CNN(卷积神经网络)精排模型构建了一个聊天机器人,旨在实现一个能够进行日常对话和情感陪伴的聊天机器人。 2.项目运行环境:Python环境、TensorFlow 环境和Python包jieba、tqdm、nltk、pyqt5等。 3.项目包括4个模块:数据预处理、模型创建与编译、模型训练及保存、模型生成。数据来源于GitHub开源语料集,下 载地址为: https://github.com/codemayq。在TF-IDF模型中定义的架构为:计算TF-IDF向量,通过倒排表的方式找到与当前输入类似的问题描述,针对候选问题进行余弦相似度计算。模型生成一是通过中控模块调用召回和精排模型;二是通过训练好的召回和精排模型进行语义分类,并且获取输出。 4.准确率评估:测试准确率在90%左右。 5.项目博客:https://blog.csdn.net/qq_31136513/article/details/131540115

文件下载

资源详情

[{"title":"( 40 个子文件 49.67MB ) 基于TF-IDF+Tensorflow+PyQt+孪生神经网络智能聊天机器人(深度学习)含Python工程源码及模型+训练数据集","children":[{"title":"项目3 基于检索式模型的聊天机器人","children":[{"title":"ChatBot","children":[{"title":"background.jpg <span style='color:#111;'> 18.27KB </span>","children":null,"spread":false},{"title":"word2vec","children":[{"title":"5000-small.txt <span style='color:#111;'> 9.10MB </span>","children":null,"spread":false},{"title":"70000-small.txt <span style='color:#111;'> 127.33MB </span>","children":null,"spread":false}],"spread":true},{"title":"data","children":[{"title":"userdict.txt <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"word_vocab.txt <span style='color:#111;'> 17B </span>","children":null,"spread":false},{"title":"train.csv <span style='color:#111;'> 95.06KB </span>","children":null,"spread":false},{"title":"origin","children":[{"title":"train.csv <span style='color:#111;'> 22.25KB </span>","children":null,"spread":false},{"title":"test.csv <span style='color:#111;'> 5.20KB </span>","children":null,"spread":false}],"spread":true},{"title":"qa_.csv <span style='color:#111;'> 56.51KB </span>","children":null,"spread":false},{"title":"test.csv <span style='color:#111;'> 5.09KB </span>","children":null,"spread":false}],"spread":true},{"title":"Recall","children":[{"title":"sentenceSimilarity.py <span style='color:#111;'> 2.85KB </span>","children":null,"spread":false},{"title":"sentence.py <span style='color:#111;'> 596B </span>","children":null,"spread":false},{"title":"recall_model.py <span style='color:#111;'> 2.46KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"recall_model.cpython-37.pyc <span style='color:#111;'> 2.12KB </span>","children":null,"spread":false},{"title":"sentenceSimilarity.cpython-36.pyc <span style='color:#111;'> 4.27KB </span>","children":null,"spread":false},{"title":"recall_model.cpython-36.pyc <span style='color:#111;'> 2.99KB </span>","children":null,"spread":false},{"title":"jiebaSegment.cpython-37.pyc <span style='color:#111;'> 1.42KB </span>","children":null,"spread":false},{"title":"sentence.cpython-37.pyc <span style='color:#111;'> 1.09KB </span>","children":null,"spread":false},{"title":"tmodel.cpython-36.pyc <span style='color:#111;'> 1.59KB </span>","children":null,"spread":false},{"title":"sentence.cpython-36.pyc <span style='color:#111;'> 1.07KB </span>","children":null,"spread":false},{"title":"jiebaSegment.cpython-36.pyc <span style='color:#111;'> 1.41KB </span>","children":null,"spread":false},{"title":"sentenceSimilarity.cpython-37.pyc <span style='color:#111;'> 3.85KB </span>","children":null,"spread":false}],"spread":true},{"title":"jiebaSegment.py <span style='color:#111;'> 1.13KB </span>","children":null,"spread":false}],"spread":true},{"title":"GUI.py <span style='color:#111;'> 3.64KB </span>","children":null,"spread":false},{"title":"Rerank","children":[{"title":"model_utils.py <span style='color:#111;'> 1.03KB </span>","children":null,"spread":false},{"title":"rerank_model.py <span style='color:#111;'> 2.57KB </span>","children":null,"spread":false},{"title":"qacnn.py <span style='color:#111;'> 8.21KB </span>","children":null,"spread":false},{"title":"metrics.py <span style='color:#111;'> 4.07KB </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 6.99KB </span>","children":null,"spread":false},{"title":"data_helper.py <span style='color:#111;'> 2.91KB </span>","children":null,"spread":false},{"title":"data_preprocess.py <span style='color:#111;'> 3.71KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"model_utils.cpython-37.pyc <span style='color:#111;'> 1.09KB </span>","children":null,"spread":false},{"title":"data_preprocess2.cpython-37.pyc <span style='color:#111;'> 3.96KB </span>","children":null,"spread":false},{"title":"data_preprocess.cpython-37.pyc <span style='color:#111;'> 3.94KB </span>","children":null,"spread":false},{"title":"metrics.cpython-37.pyc <span style='color:#111;'> 4.79KB </span>","children":null,"spread":false},{"title":"rerank_model.cpython-37.pyc <span style='color:#111;'> 2.50KB </span>","children":null,"spread":false},{"title":"data_helper.cpython-37.pyc <span style='color:#111;'> 2.66KB </span>","children":null,"spread":false},{"title":"model.cpython-37.pyc <span style='color:#111;'> 5.37KB </span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":"stopwordList","children":[{"title":"stopword.txt <span style='color:#111;'> 26.09KB </span>","children":null,"spread":false}],"spread":true},{"title":"control.py <span style='color:#111;'> 3.19KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明