People increasingly use social networks to manage various aspects of their lives such as communication, collaboration, and information sharing. A user’s network of friends may offer a wide range of important benefits such as receiving online help and support and the ability to exploit professional opportunities. One of the most profound properties of social networks is their dynamic nature governed by people constantly joining and leaving the social networks. The circle of friends may frequently change when people establish friendship through social links or when their interest in a social relationship ends and the link is removed. This book introduces novel techniques and algorithms for social network-based recommender systems. Here, concepts such as link prediction using graph patterns, following recommendation based on user authority, strategic partner selection in collaborative systems, and network formation based on “social brokers” are presented. In this book, well-established graph models such as the notion of hubs and authorities provide the basis for authority-based recommendation and are systematically extended towards a unified Hyperlink Induced Topic Search (HITS) and personalized PageRank model. Detailed experiments using various real-world datasets and systematic evaluation of recommendation results proof the applicability of the presented concepts.
2021-12-16 10:53:12 3.25MB 推荐系统 社交网络 信任计算 链路预测
1
Physically+Based+Rendering +Third+Edition.rar
2021-12-15 23:14:02 35.14MB PBR
1
Physically Based Rendering , 光线跟踪:基于物理的渲染 , 从理论到实践。免费分享。
2021-12-15 23:09:52 49B Physically Based Rendering
1
今天给大家分享一本因子投资的好书:《Your Complete Guide to Factor-Based Investing》,之前公众号阿尔法搬运工也推荐过,被誉为因子界的米其林指南。 无论对刚入门的小白还是奋战多年的老兵,可能都会带来重要性的感受。作者之一Swedroe是个写作狂人,经常在其博客上分享和讨论量化相关的学术研究,数十年如一日,非常让人钦佩。
2021-12-15 17:55:33 6.6MB 因子投资 人工智能 金融 量化投资
1
matlab开发-与Weibull-based危险品率合作的危险品管理局。基于威布尔基风险率的Cox比例风险模型
2021-12-15 17:13:05 318KB 未分类
1
基于融合的快速低光照图像增强算法 这些是有关纸张的数据和代码
2021-12-14 15:15:44 27.74MB
1
RAM-Based Shift Register (ALTSHIFT_TAPS) Megafunction User Guide
2021-12-14 15:08:43 785KB ALTSHIFT_TAPS
1
中文 | Chinese-number-gestures-recognition Chinese number gestures recognition app(数字手势识别APP,识别0-10) 基于卷积神经网络的数字手势识别APP(安卓) 1、项目简介 这是一个基于卷积神经网络的数字手势识别APP(安卓),主要功能为:通过手机摄像头识别做出的数字手势,能够识别数字0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 对应的手势。 Chinese-number-gestures-recognition项目下包含两块代码:1. DigitalGestureRecognition为安卓APP代码;2. digital_gesture_recognition为PC端处理数据及训练模型代码,编程语言为python。 开发环境: PC端:python3.6, TensorFlow-gp
2021-12-14 12:46:43 147.39MB Java
1
单层感知器神经网络matlab代码基于运动图像的单通道脑电分类 Global SIP 2018接受的论文中描述了此代码。 <概述> 该存储库中的Matlab脚本确定了通道,特征和分类器的最佳组合,可最大程度地提高基于单通道EEG的运动图像BCI的分类精度。 频道:22 ch 特征: 功率谱(PS) 灰度共生矩阵(GLCM) 单通道公共空间模式(SCCSP) 分类器: 线性判别分析(LDA) k最近邻居(k-NN) 高斯混合模型(GMM) 随机森林(RF) 多层感知器(MLP) 支持向量机(SVM) 带有PS的SVM和带有SCCSP的MLP在二进制分类中显示一位受试者的分类准确度为86.6% (平均值:63.5%)。 为了进行评估,我们使用了开放访问数据集。 在使用我们的代码之前,请发送以访问数据。 <代码> 该存储库有一个主要的m.file,该文件由预处理和后处理步骤组成。 在通过预处理步骤保存特征向量之后,可以使用10倍交叉验证来计算分类精度。 另外,您可以通过更改set_config.m文件中的值来更改此框架中的每个参数。 <环境> 马尔巴布R2017a 信号处理工具箱 静力学和机
2021-12-13 20:07:54 26KB 系统开源
1
GMS: Grid-based Motion Statistics for Fast, Ultra-robust Feature Correspondence 代码解读   论文原文地址:GMS: Grid-based Motion Statistics for Fast, Ultra-robust Feature Correspondence 代码地址:github   1 论文核心思路  论文认为:匹配对应该是平滑的,对于true match pair(l1,r1),l1附近的特征点对应的匹配点也应该在r1附近.  ① 利用上面的平滑性质,建立统计分析模型(二项分布),过滤ORB mat
2021-12-13 17:12:49 544KB AS base c
1