社交网络推荐系统Social Network-Based Recommender Systems

上传者: dhcz072547 | 上传时间: 2021-12-16 10:53:12 | 文件大小: 3.25MB | 文件类型: -
People increasingly use social networks to manage various aspects of their lives such as communication, collaboration, and information sharing. A user’s network of friends may offer a wide range of important benefits such as receiving online help and support and the ability to exploit professional opportunities. One of the most profound properties of social networks is their dynamic nature governed by people constantly joining and leaving the social networks. The circle of friends may frequently change when people establish friendship through social links or when their interest in a social relationship ends and the link is removed. This book introduces novel techniques and algorithms for social network-based recommender systems. Here, concepts such as link prediction using graph patterns, following recommendation based on user authority, strategic partner selection in collaborative systems, and network formation based on “social brokers” are presented. In this book, well-established graph models such as the notion of hubs and authorities provide the basis for authority-based recommendation and are systematically extended towards a unified Hyperlink Induced Topic Search (HITS) and personalized PageRank model. Detailed experiments using various real-world datasets and systematic evaluation of recommendation results proof the applicability of the presented concepts.

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明