聚合视图对象检测 此存储库包含用于3D对象检测的聚合视图对象检测(AVOD)网络的Python实现的公共版本。 ( ,( ,,( ,( 如果您使用此代码,请引用我们的论文: @article{ku2018joint, title={Joint 3D Proposal Generation and Object Detection from View Aggregation}, author={Ku, Jason and Mozifian, Melissa and Lee, Jungwook and Harakeh, Ali and Waslander, Steven}
2024-05-05 15:54:37 24.01MB deep-learning object-detection
1
作者: Christopher M. Bishop, Hugh Bishop 书名: Deep Learning: Foundations and Concepts 发布时间: 2023 关键词: 深度学习, 人工智能
2024-04-28 15:50:19 43.68MB 人工智能
1
柠檬汽水 用于电子病历(EHR)数据的开源深度学习库。 在此库的初始发行版中.. 它基于流行论文实现了2种深度学习模型(LSTM和CNN) 使用合成的EHR数据,该数据是使用开源的 预测最重要的4种 最终目标是 继续添加更多的模型实现 不断添加其他公开可用的数据集 并设有排行榜,以跟踪哪些模型和配置在这些数据集上最有效 安装 可安装的lib即将推出 如何使用 现在,git克隆仓库并运行笔记本.. 仔细阅读以下Quick Start guides以了解基本信息 Quick Walkthrough Running Experiments 设置合成器并生成您喜欢的数据集 进行实验 路线图 排行榜,用于跟踪哪些模型和配置在不同的公开可用数据集上效果最佳。 回调,混合精度等 升级库以使用fastai v2。 或者至少,为fastai风格的回调和构建功能。 更多型号 从中挑选一些最佳的EHR模型并加
2024-04-27 21:47:39 4.05MB deep-learning pytorch healthcare fhir
1
闪电战-火炬动物园中的贝叶斯层 BLiTZ是一个简单且可扩展的库,用于在PyTorch上创建贝叶斯神经网络层(基于“)。 通过使用BLiTZ图层和utils,您可以以不影响图层之间的交互的简单方式(例如,就像使用标准PyTorch一样)添加非证书并收集模型的复杂性成本。 通过使用我们的核心权重采样器类,您可以扩展和改进此库,从而以与PyTorch良好集成的方式为更大范围的图层添加不确定性。 也欢迎拉取请求。 我们的目标是使人们能够通过专注于他们的想法而不是硬编码部分来应用贝叶斯深度学习。 Rodamap: 为不同于正态的后验分布启用重新参数化。 指数 贝叶斯层的目的 贝叶斯层上的权重采样 有可能优化我们的可训练重量 的确,存在复杂度成本函数随其变量可微分的情况。 在第n个样本处获得整个成本函数 一些笔记和总结 引用 参考 安装 要安装BLiTZ,可以使用pip命令: pip
2024-04-24 16:41:44 136KB pytorch pytorch-tutorial pytorch-implementation
1
复数域神经网络;全面解析;适合新手和小白
2024-04-16 16:57:29 185KB
1
Deep Learning With Python_中文版+英文版+代码 目前来看是最全的
2024-04-16 10:23:06 29.91MB PYTHON Deep
1
使用Python的动手深度学习算法 这是Packt发布的《 的代码库。 通过使用TensorFlow实施深度学习算法和广泛的数学知识 这本书是关于什么的? 深度学习是AI领域最受欢迎的领域之一,可让您开发各种复杂程度不同的多层模型。 本书涵盖以下激动人心的功能: 实施基础到高级的深度学习算法 掌握深度学习算法背后的数学 熟悉梯度下降及其变体,例如AMSGrad,AdaDelta,Adam和Nadam 实施循环网络,例如RNN,LSTM,GRU和seq2seq模型 了解机器如何使用CNN和胶囊网络解释图像 如果您觉得这本书适合您,请立即获取! 说明和导航 所有代码都组织在文件夹中。 该代码将如下所示: J_plus = forward_prop(x, weights_plus) J_minus = forward_prop(x, weights_minus) 这是您需要的本
2024-04-10 09:45:51 127.09MB python machine-learning deep-learning
1
语音活动检测项目 关键字:Python,TensorFlow,深度学习,时间序列分类 目录 1.11.21.3 2.12.2 5.15.2将5.35.4 去做 资源 1.安装 该项目旨在: Ubuntu的20.04 的Python 3.7.3 TensorFlow 1.15.4 $ cd /path/to/project/ $ git clone https://github.com/filippogiruzzi/voice_activity_detection.git $ cd voice_activity_detection/ 1.1基本安装 $ pip3 install -r requirements.txt $ pip3 install -e . 1.2虚拟环境安装 1.3 Docker安装 构建docker镜像: $ sudo make build (这可能
1
matlab精度检验代码深度学习 这是针对KTH 2017的个别课程分配的存储库。此存储库中的代码主要在Matlab中完成,并且训练过程中涉及的操作(例如,梯度计算和参数更新)以一般的方式(低级)实现。 数据集 对于作业1-3 对于作业4 内容 作业1:具有多类输出的一层网络(测试准确度:40.42%) 报告:+ 作业2:具有多层输出的两层网络(测试准确度:54.06%) 报告:+ 作业3:具有多类输出的k层网络(测试准确度:54.8%) 报告:+ 作业4:香草RNN逐个字符地合成英文文本 报告:+
2024-03-29 04:08:13 184.2MB 系统开源
1
本资源是本人在使用pytorch过程中知识的总结与积累,主要包括以下内容: 1. 数据预处理 2. 梯度操作 3. 网络模型搭建 4. 保存模型参数 5. GPU使用问题 6. 遇到的巨坑
2024-03-28 21:40:10 1.19MB PyTorch Deep-Learning
1